Bettin, B., Steelman, K.S., Wallace, C., Pontious, D., Veinott, E.S.: Identifying and addressing risks in the early design of a sociotechnical system through premortem. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, vol. 66, No. 1, pp. 1514–1518. SAGE Publications, Sage, Los Angeles, CA (2022)
Google Scholar
Buehler, R., Griffin, D., Ross, M.: Exploring the “Planning fallacy”: why people underestimate their task completion times. J. Pers. Soc. Psychol. 67(3), 366–381 (1994)
Article
Google Scholar
Chen, X.A., et al.: Next steps for human-centered generative AI: a technical perspective. arXiv preprint arXiv:2306.15774 (2023)
DeRosa, D. M., Smith, C. L., & Hantula, D. A. (2007). The medium matters: Mining the long-promised merit of group interaction in creative idea generation tasks in a meta-analysis of the electronic group brainstorming literature. Computers in Human Behavior, 23(3), 1549–1581–239
Google Scholar
Dell'Acqua, F., et al.: Navigating the jagged technological frontier: field experimental evidence of the effects of AI on knowledge worker productivity and quality (September15, 2023). Harvard Business School Technology & Operations Mgt. Unit Working Paper No. 24-013 (2023). https://ssrn.com/abstract=4573321 or https://doi.org/10.2139/ssrn.4573321
Eapen, T.T., Finkenstadt, D.J., Folk, J., Venkataswamy, L.: How generative AI can augment human creativity. Harv. Bus. Rev. 101(4), 56–64 (2023)
Google Scholar
Gallop, D., Willy, C., Bischoff, J.: How to catch a black swan: measuring the benefits of the premortem technique for risk identification. J. Enterprise Transform. 6(2), 87–106 (2016)
Article
MATH
Google Scholar
Gigone, D., Hastie, R.: The impact of information on small group choice. J. Pers. Soc. Psychol. 72(1), 132–140 (1997). https://doi.org/10.1037/0022-3514.72.1.132
Article
MATH
Google Scholar
Gupta, P., Ding, B., Guan, C., Ding, D.: Generative AI: aA systematic review using topic modelling techniques. Data Inform. Manage. (2024)
Google Scholar
Hackman, J.R.: Collaborative intelligence: using teams to solve hard problems. Berrett-Koehler Publishers (2011)
Google Scholar
Hagendorff, T., Fabi, S., Kosinski, M.: Human-like intuitive behavior and reasoning biases emerged in large language models but disappeared in ChatGPT. Nat. Comput. Sci. 3(10), 833–838 (2023)
Article
Google Scholar
Hoffman, B.G.: Red teaming: how your business can conquer the competition by challenging everything. Crown business (2017)
Google Scholar
Klein, G.: Performing a project premortem. Harvard Bus. Rev. 85(9), 18–19 (2007)
Google Scholar
Klein, G., Pliske, R., Crandall, B., Woods, D.D.: Problem detection. Cogn. Technol. Work 7, 14–28 (2005)
Article
Google Scholar
Kohn, N.W., Paulus, P.B., Choi, Y.: Building on the ideas of others: an examination of the idea combination process. J. Exp. Soc. Psychol. 47, 554–561 (2011)
Article
MATH
Google Scholar
Lehman, B., Veinott, E.S.: Changing perspectives: examining factors related to counterfactual thinking in ambiguous social judgments. In: Proceedings of the Annual Meeting of the Cognitive Science Society, vol. 44, no. 44 (2022)
Google Scholar
McDermott, A.F., et al.: Developing an adaptive framework to support intelligence analysis. In: Sottilare, R., Schwarz, J. (eds.) 3rd International Conference for Adaptive Instructional Systems as part of HCI International (HCII) (2021)
Google Scholar
Mosier, K.L., Fischer, U.M.: Judgment and decision making by individuals and teams: issues, models, and applications. In: Decision Making in Aviation, pp. 139–198. Routledge (2017)
Google Scholar
Mitchell, D.J., Russo, J.E., Pennington, N.: Back to the future: Temporal perspective in the explanation of events. J. Behav. Decis. Mak. 2, 25–38 (1989)
Article
MATH
Google Scholar
Mueller, S.T., et al.: Principles of explanation in human-AI systems. arXiv preprint arXiv:2102.04972 (2021)
Mueller, S.T., Hoffman, R.R., Clancey, W., Emrey, A., Klein, G.: Explanation in human-AI systems: a literature meta-review, synopsis of key ideas and publications, and bibliography for explainable AI. arXiv preprint arXiv:1902.01876 (2019)
Orasanu, J., Fischer, U.: Finding decisions in natural environments: the view from the cockpit. In: Naturalistic Decision Making, pp. 343–357. Psychology Press (2014)
Google Scholar
Parnes, S.J., Meadow, A.: Effects of ‘brainstorming’ instructions on creative pro lem solving by trained and untrained subjects. J. Educ. Psychol. 50(4), 171–176 (1959)
Article
Google Scholar
Pearson, C.M., Misra, S.K., Clair, J.A., Mitroff, I.I.:. Managing the unthinkable. Organiz. Dyn. 26(2), 51–64 (1997)
Google Scholar
Peabody, M., Veinott, E.: Focus shift: differences in reasons generated using Premortem and Worst-Case Scenario plan evaluation methods. Naturalistic Dec. Mak. 259–261 (2017)
Google Scholar
Peabody, M.: Improving planning: quantitative evaluation of the premortem technique. Unpublished Masters of Science Thesis. Michigan Technological University (2017)
Google Scholar
Putman, V.L., Paulus, P.B.: Brainstorming, brainstorming rules and decision making. J. Creat. Behav. 43, 23–39 (2009)
Article
MATH
Google Scholar
Sunstein, C.R.: Worst-case scenarios. Harvard Press (2009)
Google Scholar
Roose, K.M., Lehman, B.R., Veinott, E.S.: Premortems in game development teams: impact and potential. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, vol. 67, no. 1, pp. 1856–1861. SAGE Publications, Sage, Los Angeles, CA (2023). https://doi.org/10.1177/216950672311936
Shaer, O., Cooper, A., Mokryn, O., Kun, A.L., Ben Shoshan, H.:. AI-augmented brainwriting: investigating the use of LLMs in group ideation. In: Proceedings of the CHI Conference on Human Factors in Computing Systems, pp. 1–17 (2024)
Google Scholar
Shin, J.G., Koch, J., Lucero, A., Dalsgaard, P., Mackay, W.E.: Integrating AI in human-human collaborative ideation. In: Extended Abstracts of the 2023 CHI Conference on Human Factors in Computing Systems, pp. 1–5 (2023)
Google Scholar
Valacich, J.S., Dennis, A.R., Connolly, T.: Idea generation in computer-based groups: a new ending to an old story. Organ. Behav. Hum. Dec. Proces. 57, 448–467 (1994)
Article
MATH
Google Scholar
Veinott, B., Klein, G., Wiggins, S.: Evaluating the effectiveness of the premortem technique on plan confidence. In: 7th International ISCRAM Conference. Seattle (2010)
Google Scholar
Veinott, E.S.: Adaptive collaborative intelligence: key strategies for sensemaking in the wild. In: Stephanidis, C., et al. (eds.) HCI International 2021 - Late Breaking Papers: Cognition, Inclusion, Learning, and Culture. HCII 2021. LNCS, vol. 13096. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90328-2_8
Wadinambiarachchi, S., Kelly, R.M., Pareek, S., Zhou, Q., Velloso, E.: The effects of generative AI on design fixation and divergent thinking. In: Proceedings of the CHI Conference on Human Factors in Computing Systems, pp. 1–18 (2024)
Google Scholar
Whitaker, E., Trewhitt, E., Veinott, E.S.: Intelligent tutoring design alternatives in a serious game. In: Sottilare, R., Schwarz, J. (eds.) First International Conference for Adaptive Instructional Systems as part of HCII 2019, pp. 151–165. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22341-0_13. ISBN 978-3-030–22341-0
Whitaker, E., Trewhitt, E., Veinott, E.S.: Heuristica II: updating a 2011 game-based training architecture using generative AI tools. In: Sottilare, R.A., Schwarz, J. (eds.) Adaptive Instructional Systems. HCII 2024. LNCS, vol. 14727. Springer, Cham (2024). https://doi.org/10.1007/978-3-031-60609-0_23 (2024)
Woolley, A.W., Aggarwal, I., Malone, T.: Collective intelligence and group performance. Curr. Dir. Psychol. Sci. 24, 420–424 (2015)
Article
MATH
Google Scholar