Acheampong, F.A., Nunoo-Mensah, H., Chen, W.: Transformer models for text-based emotion detection: a review of BERT-based approaches. Artif. Intell. Rev. 54(8), 5789–5829 (2021)
Article
MATH
Google Scholar
Adeborna, E., Siau, K.: An approach to sentiment analysis – the case of airline quality rating. In: Proceedings of the Pacific Asia Conference on Information Systems. Chengdu, China (2014)
Google Scholar
Baccianella, S., Esuli, A., Sebastiani, F.: SentiWordNet 3.0: An enhanced lexical resource for sentiment analysis and opinion mining. In: Proceedings of the International Conference on Language Resources and Evaluation, pp. 2200–2204 (2010, May)
Google Scholar
Birjali, M., Kasri, M., Beni-Hssane, A.: A comprehensive survey on sentiment analysis: approaches, challenges and trends. Knowl.-Based Syst. 226, 107134 (2021)
Article
MATH
Google Scholar
Brown, T., et al.: Language models are few-shot learners. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.F., Lin, H. (eds.) Advances in Neural Information Processing Systems, vol. 33, pp. 1877–1901 (2020)
Google Scholar
Cambria, E., Speer, R., Havasi, C., Hussain, A.: SenticNet: a publicly available semantic resource for opinion mining. In: Commonsense Knowledge: Papers from the 2010 AAAI Fall Symposium. Fall Symposium Series Technical Reports, FS-10-02. Arlington, VA (2010)
Google Scholar
Chung, H.W., et al.: Scaling instruction-finetuned language models. J. Mach. Learn. Res. 25(70), 1–53 (2024)
MATH
Google Scholar
Domingos, P.: A few useful things to know about machine learning. Commun. ACM 55(10), 78–87 (2012)
Article
MATH
Google Scholar
Fu, Z., et al.: Decoder-only or encoder-decoder? Interpreting language model as a regularized encoder-decoder. arXiv preprint arXiv:2304.04052 (2023)
Joulin, A., Grave, E., Bojanowski, P., Mikolov, T.: Bag of tricks for efficient text classification. arXiv preprint arXiv:1607.01759 (2016)
Kadhim, A.I., Cheah, Y.N., Ahamed, N.H.: Text document preprocessing and dimension reduction techniques for text document clustering. In: 2014 4th International Conference on Artificial Intelligence with Applications in Engineering and Technology, pp. 69–73. IEEE (2014)
Google Scholar
Kim, Y.: Convolutional neural networks for sentence classification. arXiv preprint arXiv:1408.5882 (2019)
Li, W., Qi, F., Tang, M., Yu, Z.: Bidirectional LSTM with self-attention mechanism and multi-channel features for sentiment classification. Neurocomputing 387, 63–77 (2020)
Article
MATH
Google Scholar
Nah, F.F.H., Cai, J., Zheng, R., Pang, N.: An activity system-based perspective of generative AI: challenges and research directions. AIS Trans. Hum.-Comput. Interact. 15(3), 247–267 (2023)
Article
Google Scholar
Nah, F.F.H., Zheng, R., Cai, J., Siau, K., Chen, L.: Generative AI and ChatGPT: applications, challenges, and AI-human collaboration. J. Inform. Technol. Case Appl. Res. 25(3), 277–304 (2023)
Google Scholar
OpenAI. Hello GPT-4o. https://openai.com/index/hello-gpt-4o/. Accessed 19 May 2024
Pan, S.L., Nishant, R., Tuunanen, T., Nah, F.F.H.: Literature review in the generative AI era-how to make a compelling contribution. J. Strat. Inf. Syst. 32(3), 1–4 (2023)
Article
Google Scholar
Ravindran, S.K., Nah, F.F.H.: Prescriptive analytics: a game changer for business. Cutter Bus. Technol. J. 30(10/11), 11–17 (2017)
MATH
Google Scholar
Vaswani, A., et al.: Attention is all you need. Adv. Neural Inform. Proces. Syst. 30 (2017)
Google Scholar
Wang, Z., Xie, Q., Feng, Y., Ding, Z., Yang, Z., Xia, R.: Is ChatGPT a good sentiment analyzer? A preliminary study. arXiv preprint arXiv:2304.04339 (2023)
Wankhade, M., Rao, A.C.S., Kulkarni, C.: A survey on sentiment analysis methods, applications, and challenges. Artif. Intell. Rev. 55(7), 5731–5780 (2022)
Article
MATH
Google Scholar
Yadav, A., Vishwakarma, D.K.: Sentiment analysis using deep learning architectures: a review. Artif. Intell. Rev. 53(6), 4335–4385 (2020)
Article
MATH
Google Scholar
Yuan, B., Siau, K.: A research stream on sentiment analysis. In: Proceedings of the Americas Conference on Information Systems. Boston, MA (2017)
Google Scholar
Yuan, B., Siau, K.: Lexicons in sentiment analytics. In: Proceedings of the Twelve Annual Midwest Association for Information Systems Conference. Springfield, IL (2017)
Google Scholar
Zhang, W., Deng, Y., Liu, B., Pan, S.J., Bing, L.: Sentiment analysis in the era of large language models: a reality check. arXiv preprint arXiv:2305.15005 (2023)
Zhao, W., Siau, K.: Machine learning approaches to sentiment analytics. In: Proceedings of the Twelve Annual Midwest Association for Information Systems Conference. Springfield, IL (2017)
Google Scholar
Zhong, Q., Ding, L., Liu, J., Du, B., Tao, D.: Can ChatGPT understand too? A comparative study on ChatGPT and fine-tuned BERT. arXiv preprint arXiv:2302.10198 (2023)