Skip to main content

A Human-Centered Algorithmic Management Framework: A Literature Review

  • Conference paper
  • First Online:
HCI International 2024 – Late Breaking Papers (HCII 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15382))

Included in the following conference series:

  • 570 Accesses

Abstract

Algorithmic management has become an important tool for most organizations to improve operational efficiency and decision-making quality, and has attracted the attention of many traditional organizations. However, the key challenge is how to design and effectively apply algorithmic management to ensure that it is applicable to different organization types, while protecting the rights of employees in the process. As a result, a human-centered algorithmic management (HCAM) framework has been developed to address the current challenges. The framework: (1) outlined the current main issues of algorithmic management, including inflexible, intrusive, inscrutable, unfair, and unsustainable; (2) identified the goals to be achieved and the corresponding strategies, including the goals of autonomous, collaborative, fair, satisfactory, sustainable, trustworthy, transparent, interpretable, and understandable; (3) verified by comparing the application of the framework in two different work environments in digital and traditional organizations. The human-centered algorithmic management framework is not only more likely to be effectively implemented in diverse organizational environments, but also enables algorithmic design to be competent in more complex management tasks, facilitates multi-party collaboration and satisfaction, and at the same time supports employee autonomy, innovation, and long-term sustainable development of the organization, among others.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
€34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 53.49
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 70.61
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

') var buybox = document.querySelector("[data-id=id_"+ timestamp +"]").parentNode var buyingOptions = buybox.querySelectorAll(".buying-option") ;[].slice.call(buyingOptions).forEach(initCollapsibles) var buyboxMaxSingleColumnWidth = 480 function initCollapsibles(subscription, index) { var toggle = subscription.querySelector(".buying-option-price") subscription.classList.remove("expanded") var form = subscription.querySelector(".buying-option-form") var priceInfo = subscription.querySelector(".price-info") var buyingOption = toggle.parentElement if (toggle && form && priceInfo) { toggle.setAttribute("role", "button") toggle.setAttribute("tabindex", "0") toggle.addEventListener("click", function (event) { var expandedBuyingOptions = buybox.querySelectorAll(".buying-option.expanded") var buyboxWidth = buybox.offsetWidth ;[].slice.call(expandedBuyingOptions).forEach(function(option) { if (buyboxWidth buyboxMaxSingleColumnWidth) { toggle.click() } else { if (index === 0) { toggle.click() } else { toggle.setAttribute("aria-expanded", "false") form.hidden = "hidden" priceInfo.hidden = "hidden" } } }) } initialStateOpen() if (window.buyboxInitialised) return window.buyboxInitialised = true initKeyControls() })()

Institutional subscriptions

Similar content being viewed by others

References

  1. Employers Embrace Artificial Intelligence for HR. https://www.shrm.org/topics-tools/news/employers-embrace-artificial-intelligence-hr. Accessed 3 Jan 2024

  2. Lee, M.K., Kusbit, D., Metsky, E., Dabbish, L.: Working with machines: the impact of algorithmic and data-driven management on human workers. In: Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, pp. 1603–1612. Association for Computing Machinery, New York, NY, USA (2015). https://doi.org/10.1145/2702123.2702548

  3. Wu, X., Liu, Q., Qu, H., Wang, J.: The effect of algorithmic management and workers’ coping behavior: an exploratory qualitative research of Chinese food-delivery platform. Tour. Manage. 96, 104716 (2023). https://doi.org/10.1016/j.tourman.2022.104716

    Article  Google Scholar 

  4. Gagné, M., Parent-Rocheleau, X., Bujold, A., Gaudet, M.-C., Lirio, P.: How algorithmic management influences worker motivation: a self-determination theory perspective. Can. Psychol./Psychologie canadienne. 63, 247–260 (2022). https://doi.org/10.1037/cap0000324

    Article  Google Scholar 

  5. Schultze, U., Orlikowski, W.J.: Metaphors of virtuality: shaping an emergent reality. Inf. Organ. 11, 45–77 (2001). https://doi.org/10.1016/S1471-7727(00)00003-8

    Article  MATH  Google Scholar 

  6. Noponen, N., Feshchenko, P., Auvinen, T., Luoma-aho, V., Abrahamsson, P.: Taylorism on steroids or enabling autonomy? A systematic review of algorithmic management. Manag. Rev. Q. (2023). https://doi.org/10.1007/s11301-023-00345-5

    Article  Google Scholar 

  7. Lippert, I., Kirchner, K., Wiener, M.: Context matters: the use of algorithmic management mechanisms in platform, hybrid, and traditional work contexts. In: Proceedings of the 56th Hawaii International Conference on System Sciences, pp. 5282–5291 (2023)

    Google Scholar 

  8. Cropanzano, R., Keplinger, K., Lambert, B.K., Caza, B., Ashford, S.J.: The organizational psychology of gig work: an integrative conceptual review. J. Appl. Psychol. 108, 492–519 (2023). https://doi.org/10.1037/apl0001029

    Article  Google Scholar 

  9. Duggan, J., Sherman, U., Carbery, R., McDonnell, A.: Algorithmic management and app-work in the gig economy: a research agenda for employment relations and HRM. Hum. Resour. Manag. J. 30, 114–132 (2020). https://doi.org/10.1111/1748-8583.12258

    Article  Google Scholar 

  10. Adams-Prassl, J.: What if your boss was an algorithm? Economic incentives, legal challenges, and the rise of artificial intelligence at work. Comp. Lab. L. Pol’y J. 41, 123 (2019)

    MATH  Google Scholar 

  11. Kellogg, K.C., Valentine, M.A., Christin, A.: Algorithms at work: the new contested terrain of control. Annals 14, 366–410 (2020). https://doi.org/10.5465/annals.2018.0174

    Article  MATH  Google Scholar 

  12. Jabagi, N., Croteau, A.-M., Audebrand, L.K., Marsan, J.: Gig-workers’ motivation: thinking beyond carrots and sticks. J. Manag. Psychol. 34, 192–213 (2019). https://doi.org/10.1108/JMP-06-2018-0255

    Article  Google Scholar 

  13. Lee, M.K.: Understanding perception of algorithmic decisions: fairness, trust, and emotion in response to algorithmic management. Big Data Soc. 5, 205395171875668 (2018). https://doi.org/10.1177/2053951718756684

    Article  Google Scholar 

  14. Galperin, H., Greppi, C.: Geographical discrimination in digital labor platforms. SSRN J. (2017). https://doi.org/10.2139/ssrn.2922874

    Article  MATH  Google Scholar 

  15. Xu, W., Gao, Z.: Enabling human-centered AI: a methodological perspective (2023). https://doi.org/10.48550/ARXIV.2311.06703

  16. Lee, M.K., Kim, J.T., Lizarondo, L.: A human-centered approach to algorithmic services: considerations for fair and motivating smart community service management that allocates donations to non-profit organizations. In: Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, pp. 3365–3376. ACM, Denver Colorado USA (2017). https://doi.org/10.1145/3025453.3025884

  17. Schmidt, A.: Interactive human centered artificial intelligence: a definition and research challenges. In: Proceedings of the International Conference on Advanced Visual Interfaces, pp. 1–4. ACM, Salerno Italy (2020). https://doi.org/10.1145/3399715.3400873

  18. Thompson, P., Van Den Broek, D.: Managerial control and workplace regimes: an introduction. Work Employ Soc. 24, 1–12 (2010). https://doi.org/10.1177/0950017010384546

    Article  MATH  Google Scholar 

  19. Smith, C.: Continuity and change in labor process analysis forty years after Labor and Monopoly Capital. Labor Stud. J. 40, 222–242 (2015). https://doi.org/10.1177/0160449X15607154

  20. Wood, A.J., Graham, M., Lehdonvirta, V., Hjorth, I.: Good gig, bad gig: autonomy and algorithmic control in the global gig economy. Work Employ Soc. 33, 56–75 (2019). https://doi.org/10.1177/0950017018785616

    Article  MATH  Google Scholar 

  21. European Agency for Safety and Health at Work.: Foresight on new and emerging occupational safety and health risks associated with digitalisation by 2025. Publications Office, LU (2018)

    Google Scholar 

  22. Deci, E.L., Ryan, R.M.: The “What” and “Why” of goal pursuits: human needs and the self-determination of behavior. Psychol. Inq. 11, 227–268 (2000). https://doi.org/10.1207/S15327965PLI1104_01

    Article  MATH  Google Scholar 

  23. Kinowska, H., Sienkiewicz, ŁJ.: Influence of algorithmic management practices on workplace well-being – evidence from European organisations. ITP 36, 21–42 (2023). https://doi.org/10.1108/ITP-02-2022-0079

    Article  MATH  Google Scholar 

  24. Benlian, A., et al.: Algorithmic management: bright and dark sides, practical implications, and research opportunities. Bus. Inf. Syst. Eng. 64, 825–839 (2022). https://doi.org/10.1007/s12599-022-00764-w

    Article  MATH  Google Scholar 

  25. Langfred, C.W.: The downside of self-management: a longitudinal study of the effects TF conflict on trust, autonomy, and task interdependence in self-managing teams. AMJ 50, 885–900 (2007). https://doi.org/10.5465/amj.2007.26279196

    Article  MATH  Google Scholar 

  26. Won, J., Lee, D., Lee, J.: Understanding experiences of food-delivery-platform workers under algorithmic management using topic modeling. Technol. Forecast. Soc. Chang. 190, 122369 (2023). https://doi.org/10.1016/j.techfore.2023.122369

    Article  MATH  Google Scholar 

  27. Meijerink, J., Bondarouk, T.: The duality of algorithmic management: toward a research agenda on HRM algorithms, autonomy and value creation. Hum. Resour. Manag. Rev. 33, 100876 (2023)

    MATH  Google Scholar 

  28. Meijerink, J., Boons, M., Keegan, A., Marler, J.: Algorithmic human resource management: synthesizing developments and cross-disciplinary insights on digital HRM. Int. J. Hum. Resource Manage. 32, 2545–2562 (2021). https://doi.org/10.1080/09585192.2021.1925326

    Article  Google Scholar 

  29. Goods, C., Veen, A., Barratt, T.: “Is your gig any good?” Analysing job quality in the Australian platform-based food-delivery sector. J. Ind. Relat. 61, 502–527 (2019). https://doi.org/10.1177/0022185618817069

    Article  Google Scholar 

  30. Barati, M., Ansari, B.: Effects of algorithmic control on power asymmetry and inequality within organizations. J. Manag. Control. 33, 525–544 (2022). https://doi.org/10.1007/s00187-022-00347-6

    Article  MATH  Google Scholar 

  31. Gal, U., Jensen, T.B., Stein, M.-K.: Breaking the vicious cycle of algorithmic management: a virtue ethics approach to people analytics. Inf. Organ. 30, 100301 (2020). https://doi.org/10.1016/j.infoandorg.2020.100301

    Article  MATH  Google Scholar 

  32. Yam, K.C., Tang, P.M., Jackson, J.C., Su, R., Gray, K.: The rise of robots increases job insecurity and maladaptive workplace behaviors: multimethod evidence (2022)

    Google Scholar 

  33. Möhlmann, M., Zalmanson, L., Henfridsson, O., Gregory, R.W.: Algorithmic management of work on online labor platforms: when matching meets control. MIS Quar. 45 (2021)

    Google Scholar 

  34. Schulze, L., Cai, Z., Trenz, M., Tan, C.-W.: Algorithmic unfairness on digital labor platforms: how algorithmic management practices disadvantage workers (2022)

    Google Scholar 

  35. 2024 Global Talent Trends. https://www.mercer.com/insights/people-strategy/future-of-work/global-talent-trends/. Accessed 3 Jan 2024

  36. Duggan, J., Sherman, U., Carbery, R., McDonnell, A.: Boundaryless careers and algorithmic constraints in the gig economy. Int. J. Hum. Resource Manage. 33, 4468–4498 (2022). https://doi.org/10.1080/09585192.2021.1953565

    Article  MATH  Google Scholar 

  37. Ashford, S.J., Caza, B.B., Reid, E.M.: From surviving to thriving in the gig economy: a research agenda for individuals in the new world of work. Res. Organ. Behav. 38, 23–41 (2018)

    Google Scholar 

  38. Becker, L., Wurm, B., Hess, T.: Will algorithms replace managers? A systematic literature review on algorithmic management (2023)

    Google Scholar 

  39. Cameron, L.: Management Department University of Pennsylvania, USA, Laura Lamers, Behavioural Management and Social Sciences University of Twente, Netherlands, Ulrich Leicht-Deobald, Trinity Business School Trinity College Dublin, The University of Dublin, Ireland, Christoph Lutz, Department of Communication and Culture BI Norwegian Business School, Norway, Jeroen Meijerink, Behavioural Management and Social Sciences University of Twente, Netherlands, Mareike Möhlmann, Information and Process Management Department Bentley University, USA: Algorithmic Management: Its Implications for Information Systems Research. CAIS, vol. 52, pp. 518–537 (2023). https://doi.org/10.17705/1CAIS.05221

  40. Xu, W., Dainoff, M.J., Ge, L., Gao, Z.: Transitioning to human interaction with AI systems: new challenges and opportunities for HCI professionals to enable human-centered AI. Int. J. Hum.-Comput. Interact. 39, 494–518 (2023). https://doi.org/10.1080/10447318.2022.2041900

    Article  Google Scholar 

  41. Andrienko, N., Andrienko, G., Adilova, L., Wrobel, S.: Visual analytics for human-centered machine learning. IEEE Comput. Graphics Appl. 42, 123–133 (2022). https://doi.org/10.1109/MCG.2021.3130314

    Article  MATH  Google Scholar 

  42. Ozmen Garibay, O., et al.: Six human-centered artificial intelligence grand challenges. Int. J. Hum.-Comput. Interact. 39, 391–437 (2023). https://doi.org/10.1080/10447318.2022.2153320

    Article  Google Scholar 

  43. Shneiderman, B.: Human-centered AI. Oxford University Press (2022). https://doi.org/10.1093/oso/9780192845290.001.0001

  44. Shneiderman, B.: Human-centered artificial intelligence: reliable, safe & trustworthy. Int. J. Hum.-Comput. Interact. 36, 495–504 (2020). https://doi.org/10.1080/10447318.2020.1741118

    Article  Google Scholar 

  45. Longo, F., Nicoletti, L., Padovano, A.: Smart operators in industry 4.0: a human-centered approach to enhance operators’ capabilities and competencies within the new smart factory context. Comput. Indust. Eng. 113, 144–159 (2017). https://doi.org/10.1016/j.cie.2017.09.016

  46. Colquitt, J.A., Hill, E.T., De Cremer, D.: Forever focused on fairness: 75 years of organizational justice in Personnel Psychology. Pers. Psychol. 76, 413–435 (2023). https://doi.org/10.1111/peps.12556

    Article  Google Scholar 

  47. Woods, S.A., Ahmed, S., Nikolaou, I., Costa, A.C., Anderson, N.R.: Personnel selection in the digital age: a review of validity and applicant reactions, and future research challenges. Eur. J. Work Organ. Psy. 29, 64–77 (2020). https://doi.org/10.1080/1359432X.2019.1681401

    Article  Google Scholar 

  48. Ahmad, K., Abdelrazek, M., Arora, C., Agrahari Baniya, A., Bano, M., Grundy, J.: Requirements engineering framework for human-centered artificial intelligence software systems. Appl. Soft Comput. 143, 110455 (2023). https://doi.org/10.1016/j.asoc.2023.110455

    Article  Google Scholar 

  49. Herrmann, T., Pfeiffer, S.: Keeping the organization in the loop: a socio-technical extension of human-centered artificial intelligence. AI Soc. 38, 1523–1542 (2023). https://doi.org/10.1007/s00146-022-01391-5

    Article  MATH  Google Scholar 

  50. Battistoni, P., Di Gregorio, M., Romano, M., Sebillo, M., Vitiello, G.: Can AI-oriented requirements enhance human-centered design of intelligent interactive systems? results from a workshop with young HCI designers. Multimodal Technol. Interact. 7, 24 (2023). https://doi.org/10.3390/mti7030024

    Article  Google Scholar 

  51. Nazar, M., Alam, M.M., Yafi, E., Su’ud, M.M.: A systematic review of human–computer interaction and explainable artificial intelligence in healthcare with artificial intelligence techniques. IEEE Access 9, 153316–153348 (2021). https://doi.org/10.1109/ACCESS.2021.3127881

  52. Riedl, M.O.: Human-centered artificial intelligence and machine learning. Hum. Behav. Emerg. Technol. 1, 33–36 (2019). https://doi.org/10.1002/hbe2.117

    Article  MATH  Google Scholar 

  53. Sacha, D., et al.: What you see is what you can change: human-centered machine learning by interactive visualization. Neurocomputing 268, 164–175 (2017). https://doi.org/10.1016/j.neucom.2017.01.105

    Article  MATH  Google Scholar 

  54. Yang, Q., Steinfeld, A., Rosé, C., Zimmerman, J.: Re-examining whether, why, and how human-ai interaction is uniquely difficult to design. In: Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, pp. 1–13. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3313831.3376301

  55. Witteman, H.O., et al.: User-centered design and the development of patient decision aids: protocol for a systematic review. Syst. Rev. 4, 11 (2015). https://doi.org/10.1186/2046-4053-4-11

    Article  MATH  Google Scholar 

  56. Garrett, J.J.: The elements of user experience: user-centered design for the web and beyond. New Riders, Berkeley, Calif (2011)

    Google Scholar 

  57. Weidinger, L., et al.: Sociotechnical safety evaluation of generative AI systems. https://arxiv.longhoe.net/abs/2310.11986v2. Accessed 25 May 2024

  58. Al-Azzawi, M., Doan, D., Sipola, T., Hautamäki, J., Kokkonen, T.: Artificial intelligence cyberattacks in red teaming: a scoping review. In: Rocha, Á., Adeli, H., Dzemyda, G., Moreira, F., Poniszewska-Marańda, A. (eds.) Good Practices and New Perspectives in Information Systems and Technologies. WorldCIST 2024. LNNS, vol. 985. Springer, Cham (2024). https://doi.org/10.1007/978-3-031-60215-3_13

  59. Neylan, J., Biddlestone, M., Roozenbeek, J., Van Der Linden, S.: How to “inoculate” against multimodal misinformation: a conceptual replication of Roozenbeek and van der Linden (2020). Sci. Rep. 13, 18273 (2023). https://doi.org/10.1038/s41598-023-43885-2

    Article  MATH  Google Scholar 

  60. Moore, R.C., Hancock, J.T.: A digital media literacy intervention for older adults improves resilience to fake news. Sci. Rep. 12, 6008 (2022). https://doi.org/10.1038/s41598-022-08437-0

    Article  MATH  Google Scholar 

  61. Carlos Alvarez De La Vega, J., Cecchinato, E.M., Rooksby, J.: Why lose control?” A Study of Freelancers’ Experiences with Gig Economy Platforms. In: Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, pp. 1–14. ACM, Yokohama Japan (2021). https://doi.org/10.1145/3411764.3445305

  62. De Stefano, V.: The rise of the “Just-in-Time Workforce”: on-demand work, crowd work and labour protection in the “Gig-Economy.” SSRN J. (2015). https://doi.org/10.2139/ssrn.2682602

    Article  MATH  Google Scholar 

  63. Todolí-Signes, A.: The ‘gig economy’: employee, self-employed or the need for a special employment regulation? Transf. Eur. Rev. Labour Res. 23, 193–205 (2017). https://doi.org/10.1177/1024258917701381

  64. Stewart, A., Stanford, J.: Regulating work in the gig economy: what are the options? Econ. Labour Relat. Rev. 28, 420–437 (2017). https://doi.org/10.1177/1035304617722461

    Article  MATH  Google Scholar 

  65. Möhlmannn, M., Alves de Lima Salge, C., Marabelli, M.: Algorithm sensemaking: how platform workers make sense of algorithmic management. J. Assoc. Inform. Syst. 24, 35–64 (2023). https://doi.org/10.17705/1jais.00774

  66. Möhlmann, M.: Algorithmic nudges don’t have to be unethical. Harvard Bus. Rev. 22 (2021)

    Google Scholar 

  67. Hu, Y., Chan, A.P.C., Le, Y., Jin, R.: From construction megaproject management to complex project management: bibliographic analysis. J. Manage. Eng. 31, 04014052 (2015). https://doi.org/10.1061/(ASCE)ME.1943-5479.0000254

    Article  Google Scholar 

  68. Khazaeni, G., Khanzadi, M., Afshar, A.: Fuzzy adaptive decision making model for selection balanced risk allocation. Int. J. Project Manage. 30, 511–522 (2012). https://doi.org/10.1016/j.ijproman.2011.10.003

    Article  MATH  Google Scholar 

  69. Fellows, R., Liu, A.M.M.: Managing organizational interfaces in engineering construction projects: addressing fragmentation and boundary issues across multiple interfaces. Constr. Manag. Econ. 30, 653–671 (2012). https://doi.org/10.1080/01446193.2012.668199

    Article  MATH  Google Scholar 

  70. Rochet, J.-C., Tirole, J.: Platform competition in two-sided markets. J. Eur. Econ. Assoc. 1, 990–1029 (2003). https://doi.org/10.1162/154247603322493212

    Article  MATH  Google Scholar 

  71. Frederick, W.C.: Business and society: corporate strategy, public policy, ethics

    Google Scholar 

  72. Chen, Y.Q., Zhang, Y.B., Zhang, S.J.: Impacts of different types of owner-contractor conflict on cost performance in construction projects. J. Constr. Eng. Manage. 140, 04014017 (2014). https://doi.org/10.1061/(ASCE)CO.1943-7862.0000852

    Article  Google Scholar 

  73. Iorio, J., Taylor, J.E.: Boundary object efficacy: the mediating role of boundary objects on task conflict in global virtual project networks. Int. J. Project Manage. 32, 7–17 (2014). https://doi.org/10.1016/j.ijproman.2013.04.001

    Article  MATH  Google Scholar 

  74. Niederman, F.: Project management: openings for disruption from AI and advanced analytics. ITP. 34, 1570–1599 (2021). https://doi.org/10.1108/ITP-09-2020-0639

    Article  MATH  Google Scholar 

  75. Shaw, A., Fiers, F., Hargittai, E.: Participation inequality in the gig economy. Inf. Commun. Soc. 26, 2250–2267 (2023). https://doi.org/10.1080/1369118X.2022.2085611

    Article  MATH  Google Scholar 

  76. 刘杨: 2020年农民工监测调查报告_部门政务_中国政府网. https://www.gov.cn/xinwen/2021-04/30/content_5604232.htm#tdsub. Accessed 16 Jan 2024

  77. Liao, T.W., Egbelu, P.J., Sarker, B.R., Leu, S.S.: Metaheuristics for project and construction management – a state-of-the-art review. Autom. Constr. 20, 491–505 (2011). https://doi.org/10.1016/j.autcon.2010.12.006

    Article  MATH  Google Scholar 

  78. Design and Construction Building in Value. Elsevier professional, Erscheinungsort nicht ermittelbar (2002)

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the support from the National Natural Science Foundation of China (72171030), the Chongqing Municipal Federation of Social Sciences (2022YC049), and the 2022 Reform in College Elite Curriculum Research Project of Chongqing University, China (CQU-EIE-2022011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jiang, Y. et al. (2024). A Human-Centered Algorithmic Management Framework: A Literature Review. In: Degen, H., Ntoa, S. (eds) HCI International 2024 – Late Breaking Papers. HCII 2024. Lecture Notes in Computer Science, vol 15382. Springer, Cham. https://doi.org/10.1007/978-3-031-76827-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-76827-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-76826-2

  • Online ISBN: 978-3-031-76827-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics