Abood, H.G.: E-learning applications in engineering and the project-based learning vs problem-based learning styles: a critical & comparative study. Eng. Technol. J. 37(4), 391–396 (2019)
Article
MATH
Google Scholar
Alfredo, R., et al.: Human-centred learning analytics and AI in education: a systematic literature review. Comput. Educ. Artif. Intell. 100215 (2024)
Google Scholar
An, S., Bhat, G., Gumussoy, S., Ogras, U.: Transfer learning for human activity recognition using representational analysis of neural networks. ACM Trans. Comput. Healthc. 4(1), 1–21 (2023)
Article
Google Scholar
An, S., Tuncel, Y., Basaklar, T., Ogras, U.Y.: A survey of embedded machine learning for smart and sustainable healthcare applications. In: Pasricha, S., Shafique, M. (eds.) Embedded Machine Learning for Cyber-Physical, IoT, and Edge Computing, pp. 127–150. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-40677-5_6
Chapter
MATH
Google Scholar
Beckman, K., Coulter, N., Khajenoori, S., Mead, N.R.: Collaborations: closing the industry-academia gap. IEEE Softw. 14(6), 49–57 (1997)
Article
Google Scholar
Bennett, B.T.: Teaching artificial intelligence in a multidisciplinary computing environment. J. Comput. Sci. Coll. 33(2), 222–228 (2017)
MATH
Google Scholar
Brüngel, R., Rückert, J., Friedrich, C.M.: Project-based learning in a machine learning course with differentiated industrial projects for various computer science master programs. In: 2020 IEEE 32nd Conference on Software Engineering Education and Training (CSEE &T), pp. 1–5. IEEE (2020)
Google Scholar
Chen, P., Ding, H., Araki, J., Huang, R.: Explicitly capturing relations between entity mentions via graph neural networks for domain-specific named entity recognition. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers), pp. 735–742 (2021)
Google Scholar
Chen, P., et al.: Hytrel: hypergraph-enhanced tabular data representation learning. In: Advances in Neural Information Processing Systems, vol. 36 (2024)
Google Scholar
Daun, M., Salmon, A., Tenbergen, B., Weyer, T., Pohl, K.: Industrial case studies in graduate requirements engineering courses: The impact on student motivation. In: 2014 IEEE 27th Conference on Software Engineering Education and Training (CSEE &T), pp. 3–12. IEEE (2014)
Google Scholar
Daun, M., Salmon, A., Weyer, T., Pohl, K., Tenbergen, B.: Project-based learning with examples from industry in university courses: an experience report from an undergraduate requirements engineering course. In: 2016 IEEE 29th International Conference on Software Engineering Education and Training (CSEET), pp. 184–193. IEEE (2016)
Google Scholar
Dou, G., Zhou, Z., Qu, X.: Time majority voting, a PC-based EEG classifier for non-expert users. In: Kurosu, M., et al. (eds.) HCII 2022. LNCS, vol. 13519, pp. 415–428. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-17618-0_29
Chapter
Google Scholar
Gui, S., Song, S., Qin, R., Tang, Y.: Remote sensing object detection in the deep learning era - a review. Remote Sens. 16(2), 327 (2024)
Article
MATH
Google Scholar
Huang, L.: Integrating machine learning to undergraduate engineering curricula through project-based learning. In: 2019 IEEE Frontiers in Education Conference (FIE), pp. 1–4. IEEE (2019)
Google Scholar
Jiang, C., Hui, B., Liu, B., Yan, D.: Successfully applying lottery ticket hypothesis to diffusion model. arXiv preprint arXiv:2310.18823 (2023)
Kastrati, A., et al.: Eegeyenet: a simultaneous electroencephalography and eye-tracking dataset and benchmark for eye movement prediction. arXiv preprint arXiv:2111.05100 (2021)
Kwan, P.: A college freshman’s guide to machine learning: short and sweet way to introduce machine learning to college freshman. J. Comput. Sci. Coll. 30(1), 36–37 (2014)
MathSciNet
MATH
Google Scholar
Lao, N.: Reorienting machine learning education towards tinkerers and ML-engaged citizens. Ph.D. thesis, Massachusetts Institute of Technology Cambridge, MA, USA (2020)
Google Scholar
Li, H., et al.: Spherehead: stable 3D full-head synthesis with spherical tri-plane representation. arXiv preprint arXiv:2404.05680 (2024)
Lu, Y., Chen, T., Hao, N., Van Rechem, C., Chen, J., Fu, T.: Uncertainty quantification and interpretability for clinical trial approval prediction. Health Data Sci. 4, 0126 (2024)
Article
MATH
Google Scholar
Lu, Y., Sato, K., Wang, J.: Deep learning based multi-label image classification of protest activities. arXiv preprint arXiv:2301.04212 (2023)
Lu, Y., Shen, M., Wang, H., Wang, X., van Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023)
Ma, X.: Traffic performance evaluation using statistical and machine learning methods. Ph.D. thesis, The University of Arizona (2022)
Google Scholar
Ma, X., Karimpour, A., Wu, Y.J.: Data-driven transfer learning framework for estimating on-ramp and off-ramp traffic flows. J. Intell. Transp. Syst. 1–14 (2024)
Google Scholar
Marques, L.S., Gresse von Wangenheim, C., Hauck, J.C.: Teaching machine learning in school: a systematic mapping of the state of the art. Inform. Educ. 19(2), 283–321 (2020)
Google Scholar
Martins, R.M., Gresse Von Wangenheim, C.: Findings on teaching machine learning in high school: a ten-year systematic literature review. Inform. Educ. 22(3), 421–440 (2023)
Google Scholar
Miller, E.C., Krajcik, J.S.: Promoting deep learning through project-based learning: a design problem. Disc. Interdisc. Sci. Educ. Res. 1(1), 1–10 (2019)
MATH
Google Scholar
Murungi, N.K., Pham, M.V., Dai, X.C., Qu, X.: Empowering computer science students in electroencephalography (EEG) analysis: a review of machine learning algorithms for EEG datasets. In: The 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD) (2023)
Google Scholar
Ng, D.T.K., Lee, M., Tan, R.J.Y., Hu, X., Downie, J.S., Chu, S.K.W.: A review of AI teaching and learning from 2000 to 2020. Educ. Inf. Technol. 28(7), 8445–8501 (2023)
Article
MATH
Google Scholar
Qu, X., Liu, P., Li, Z., Hickey, T.: Multi-class time continuity voting for EEG classification. In: Frasson, C., Bamidis, P., Vlamos, P. (eds.) BFAL 2020. LNCS (LNAI), vol. 12462, pp. 24–33. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60735-7_3
Chapter
MATH
Google Scholar
Qu, X., Mei, Q., Liu, P., Hickey, T.: Using EEG to distinguish between writing and typing for the same cognitive task. In: Frasson, C., Bamidis, P., Vlamos, P. (eds.) BFAL 2020. LNCS (LNAI), vol. 12462, pp. 66–74. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60735-7_7
Chapter
MATH
Google Scholar
Reddi, V.J., et al.: Widening access to applied machine learning with tinyML. arXiv preprint arXiv:2106.04008 (2021)
Sanusi, I.T., Oyelere, S.S.: Pedagogies of machine learning in k-12 context. In: 2020 IEEE Frontiers in Education Conference (FIE), pp. 1–8. IEEE (2020)
Google Scholar
Sanusi, I.T., Oyelere, S.S., Vartiainen, H., Suhonen, J., Tukiainen, M.: A systematic review of teaching and learning machine learning in k-12 education. Educ. Inf. Technol. 28(5), 5967–5997 (2023)
Article
Google Scholar
Shaw, M., Herbsleb, J., Ozkaya, I.: Deciding what to design: closing a gap in software engineering education. In: Proceedings of the 27th International Conference on Software Engineering, pp. 607–608 (2005)
Google Scholar
Tan, J., Zhang, X., Wu, S., Wang, Y.: State-space model based inverse reinforcement learning for reward function estimation in brain-machine interfaces. In: 2023 45th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 1–4. IEEE (2023)
Google Scholar
Tan, M., Lee, H., Wang, D., Subramonyam, H.: Is a seat at the table enough? Engaging teachers and students in dataset specification for ml in education. Proc. ACM Hum.-Comput. Interact. 8(CSCW1), 1–32 (2024)
Article
Google Scholar
Tang, Y., Song, S., Gui, S., Chao, W., Cheng, C., Qin, R.: Active and low-cost hyperspectral imaging for the spectral analysis of a low-light environment. Sensors 23(3), 1437 (2023)
Article
MATH
Google Scholar
Van Mechelen, M., et al.: Emerging technologies in k-12 education: a future HCI research agenda. ACM Trans. Comput.-Hum. Interact. 30(3), 1–40 (2023)
Article
MATH
Google Scholar
Wang, J., Chang, R., Zhao, Z., Pahwa, R.S.: Robust detection, segmentation, and metrology of high bandwidth memory 3D scans using an improved semi-supervised deep learning approach. Sensors 23(12), 5470 (2023)
Article
MATH
Google Scholar
Winzker, M.: Semester structure with time slots for self-learning and project-based learning. In: Proceedings of the 2012 IEEE Global Engineering Education Conference (EDUCON), pp. 1–8. IEEE (2012)
Google Scholar
Wong, K., Tomov, S., Dongarra, J.: Project-based research and training in high performance data sciences, data analytics, and machine learning. J. Comput. Sci. Educ. 11(1) (2020)
Google Scholar
Yi, L., Qu, X.: Attention-based CNN capturing EEG recording’s average voltage and local change. In: Degen, H., Ntoa, S. (eds.) HCII 2022. LNCS, vol. 13336, pp. 448–459. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-05643-7_29
Chapter
MATH
Google Scholar
Yunoki, I., Berreby, G., D’Andrea, N., Lu, Y., Qu, X.: Exploring AI music generation: a review of deep learning algorithms and datasets for undergraduate researchers. In: Stephanidis, C., Antona, M., Ntoa, S., Salvendy, G. (eds.) HCII 2023. LNCS, vol. 1958, pp. 102–116. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-49215-0_13
Chapter
Google Scholar
Zhang, Z., Tian, R., Ding, Z.: Trep: transformer-based evidential prediction for pedestrian intention with uncertainty. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 37, pp. 3534–3542 (2023)
Google Scholar
Zhang, Z., Tian, R., Sherony, R., Domeyer, J., Ding, Z.: Attention-based interrelation modeling for explainable automated driving. IEEE Trans. Intell. Veh. 8(2), 1564–1573 (2022)
Article
MATH
Google Scholar
Zhao, S., et al.: Deep learning based CETSA feature prediction cross multiple cell lines with latent space representation. Sci. Rep. 14(1), 1878 (2024)
Article
MATH
Google Scholar
Zhao, Z., Zhou, F., Xu, K., Zeng, Z., Guan, C., Zhou, S.K.: Le-UDA: label-efficient unsupervised domain adaptation for medical image segmentation. IEEE Trans. Med. Imaging 42(3), 633–646 (2022)
Article
MATH
Google Scholar
Zheng, C., et al.: Charting the future of AI in project-based learning: a co-design exploration with students. In: Proceedings of the CHI Conference on Human Factors in Computing Systems, pp. 1–19 (2024)
Google Scholar