Krüger, M., et al.: Shared-Control Ansatz zur Operator-KI Interaktion für die Großbaumaschinensteuerung. In: VDI-Kongress AUTOMATION (VDI KA) 2023, pp. 559–570 (2023)
Google Scholar
Krüger, M., et al.: Synthetic data generation for the enrichment of civil engineering machine data. In: CLEaR 2023 – Construction Logistics, Equipment, and Robotics, pp. 166–175 (2023)
Google Scholar
Prinz, T., et al.: How does it work? Collecting mental models for the user-centered design of assistance systems: a construction machinery case study. In: Intelligent Human Systems Integration (IHSI 2024): Integrating People and Intelligent Systems, vol. 119 (2024)
Google Scholar
Parasuraman, R., Sheridan, T.B., Wickens, C.D.: A model for types and levels of human interaction with automation. IEEE Trans. Syst. Man Cybern. Part A: Syst. Hum., 286–297 (2000)
Google Scholar
Bainbridge, L.: Ironies of automation. Automatica 19(6), 775–779 (1983)
Article
Google Scholar
Rinta-Kahila, T., Penttinen, E., Salovaara, A., Soliman, W., Ruissalo, J.: The vicious circles of skill erosion: a case study of cognitive automation. J. Assoc. Inf. Syst. 24(5), 1378–1412 (2023)
Google Scholar
Frazier, S.N.: Measuring cognitive workload in automated knowledge work environments. In: Purdue University Graduate School [Thesis] (2022)
Google Scholar
SAE International Recommended Practice. Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor Vehicles, SAE Standard J3016_202104, Revised April 2021, Issued 2014 (2014)
Google Scholar
Henikl, J., Kemmetmüller, W., Kugi, A.: Estimation and control of the tool center point of a mobile concrete pump. Autom. Constr. 61, 112–123 (2016)
Article
Google Scholar
Wind, H., Renner, A., Sawodny, O.: Time-optimal playback trajectory generation for hydraulic material handling excavator. In: IEEE 15th International Conference on Automation Science and Engineering (CASE), pp. 1315–1320 (2019)
Google Scholar
Bender, F.A., Mitschke, M., Bräunl, T., Sawodny, O.: Predictive operator modeling for virtual prototyping of hydraulic excavators. Autom. Constr. 84, 133–145 (2017)
Article
Google Scholar
Wydra, M., Bauer, A., Geiger, C., Geimer, M.: Moderne Steueralgorithmen für Forstkräne mittels künstlichen neuronalen Netzen imitieren und optimieren. Landtechnik 75(2)s (2020)
Google Scholar
Krüger, M., et al.: Inferring cable-suspended end-effector oscillations from hydraulic actuators’ responses in diaphragm wall hydraulic grabs. IEEE Trans. Autom. Sci. Eng. 22, 1–16 (2025)
Article
Google Scholar
Zhang, M., et al.: Segmenting and classifying repetitive construction process time series using small amount of labeled data. In: IEEE 20th International Conference on Automation Science and Engineering (CASE), pp. 3035–3042 (2024)
Google Scholar
Krüger, M., Vogel-Heuser, B., Hujo, D., Huber, C., Schwarz, J., Lohmann, B.: Execution time oriented design of an adaptive controller for mobile machines. In: IEEE 21st International Conference on Industrial Informatics (INDIN), pp. 1–6 (2023)
Google Scholar
Pohl, D., Vogel-Heuser, B., Krüger, M., Echtler, M.: Quantization effects of deep neural networks on a FPGA platform. In: 2024 IEEE 7th International Conference on Industrial Cyber-Physical Systems (ICPS), pp. 1–8 (2024)
Google Scholar
Krüger, M., et al.: Forecasting membrane fouling in filtration processes using univariate data-driven models. In: 19th International Conference on Automation Science and Engineering (CASE), pp. 1–6 (2023)
Google Scholar
Krüger, M., Vogel-Heuser, B., Vollmann, S.: Investigating the rendering capability of embedded devices for graphical-user-interfaces in mobile machines. at – Automatisierungstechnik 71(11), 939–952 (2023)
Google Scholar