Akaike, H.: A new look at the statistical model identification. IEEE Trans. Autom. Control 19(6), 716–723 (1974)
Article
MathSciNet
Google Scholar
Alkoby, O., Abu-Rmileh, A., Shriki, O., Todder, D.: Can we predict who will respond to neurofeedback? a review of the inefficacy problem and existing predictors for successful eeg neurofeedback learning. Neuroscience 378, 155–164 (2018)
Article
Google Scholar
Beerendonk, L., Mejías, J.F., Nuiten, S.A., de Gee, J.W., Fahrenfort, J.J., van Gaal, S.: A disinhibitory circuit mechanism explains a general principle of peak performance during mid-level arousal. Proc. Natl. Acad. Sci. 121(5), e2312898121 (2024)
Article
Google Scholar
Beri, D., Reddy, K.J.: Physiological correlates of arousal: a metaanalytic review. J. Neurol. Neurosci. 10(4), 302 (2019)
Article
Google Scholar
Berntson, G.G., Cacioppo, J.T.: Heart rate variability: stress and psychiatric conditions. Dyn. Electrocardiography 57–64 (2004)
Google Scholar
Borghini, G., Astolfi, L., Vecchiato, G., Mattia, D., Babiloni, F.: Measuring neurophysiological signals in aircraft pilots and car drivers for the assessment of mental workload, fatigue and drowsiness. Neurosci. Biobehav. Rev. 44, 58–75 (2014)
Article
Google Scholar
Chen, M.A., Spanton, K., van Schaik, P., Spears, I., Eaves, D.: The effects of biofeedback on performance and technique of the boxing jab. Percept. Mot. Skills 128(4), 1607–1622 (2021)
Article
Google Scholar
Dargahi Nobari, K., Bartsch, K., Albers, F., Bertram, T.: Driver state regulation via real-time neurofeedback in partially automated driving. In: 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC), IEEE, Piscataway (2020). https://doi.org/10.1109/itsc45102
Electrophysiology, T.F.o.t.E.S.o.C.t.N.A.S.o.P.: Heart rate variability: standards of measurement, physiological interpretation, and clinical use. Circulation 93(5), 1043–1065 (1996)
Google Scholar
Escolano, C., Aguilar, M., Minguez, J.: Eeg-based upper alpha neurofeedback training improves working memory performance. In: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 2327–2330. IEEE (2011)
Google Scholar
Faller, J., Cummings, J., Saproo, S., Sajda, P.: Regulation of arousal via online neurofeedback improves human performance in a demanding sensory-motor task. Proc. Natl. Acad. Sci. 116(13), 6482–6490 (2019)
Article
Google Scholar
Hanslmayr, S., et al.: Visual discrimination performance is related to decreased alpha amplitude but increased phase locking. Neurosci. Lett. 375(1), 64–68 (2005)
Article
Google Scholar
Käthner, I., Wriessnegger, S.C., Müller-Putz, G.R., Kübler, A., Halder, S.: Effects of mental workload and fatigue on the p300, alpha and theta band power during operation of an erp (p300) brain-computer interface. Biol. Psychol. 102, 118–129 (2014)
Article
Google Scholar
Keynan, J.N., et al.: Electrical fingerprint of the amygdala guides neurofeedback training for stress resilience. Nat. Hum. Behav. 3(1), 63–73 (2019)
Article
Google Scholar
Lohani, M., Payne, B.R., Strayer, D.L.: A review of psychophysiological measures to assess cognitive states in real-world driving. Front. Hum. Neurosci. 13, 57 (2019)
Article
Google Scholar
Lubianiker, N., et al.: Process-based framework for precise neuromodulation. Nat. Hum. Behav. 3(5), 436–445 (2019)
Article
Google Scholar
Minder, F., Zuberer, A., Brandeis, D., Drechsler, R.: Informant-related effects of neurofeedback and cognitive training in children with adhd including a waiting control phase: a randomized-controlled trial. Eur. Child Adolescent Psychiatry 27, 1055–1066 (2018)
Article
Google Scholar
Nobari, K.D., Bartsch, K., Albers, F., Bertram, T.: Driver state regulation via real-time neurofeedback in partially automated driving. In: 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC), pp. 1–6. IEEE (2020)
Google Scholar
Organization, W.H.: Global Status Report on Road Safety 2023. World Health Organization, 1st ed edn. (2024)
Google Scholar
Parsons, B., Faubert, J.: Enhancing learning in a perceptual-cognitive training paradigm using eeg-neurofeedback. Sci. Rep. 11(1), 4061 (2021)
Article
Google Scholar
Pawar, N.M., Velaga, N.R.: Effect of time pressure on steering control of the drivers in a car-following situation. Transport. Res. F: Traffic Psychol. Behav. 80, 218–236 (2021)
Article
Google Scholar
Podvalny, E., King, L.E., He, B.J.: Spectral signature and behavioral consequence of spontaneous shifts of pupil-linked arousal in human. Elife 10, e68265 (2021)
Google Scholar
Pusenjak, N., Grad, A., Tusak, M., Leskovsek, M., Schwarzlin, R.: Can biofeedback training of psychophysiological responses enhance athletes’ sport performance? a practitioner’s perspective. Phys. Sportsmed. 43(3), 287–299 (2015)
Article
Google Scholar
Wang, X., Piñol, R.A., Byrne, P., Mendelowitz, D.: Optogenetic stimulation of locus ceruleus neurons augments inhibitory transmission to parasympathetic cardiac vagal neurons via activation of brainstem \(\alpha \)1 and \(\beta \)1 receptors. J. Neurosci. 34(18), 6182–6189 (2014)
Article
Google Scholar
Wang, Y.T., et al.: Developing an eeg-based on-line closed-loop lapse detection and mitigation system. Front. Neurosci. 8, 321 (2014)
Article
Google Scholar
Xiang, M.Q., Hou, X.H., Liao, B.G., Liao, J.W., Hu, M.: The effect of neurofeedback training for sport performance in athletes: a meta-analysis. Psychol. Sport Exerc. 36, 114–122 (2018)
Article
Google Scholar
Xu, C., Bao, J., Wang, C., Liu, P.: Association rule analysis of factors contributing to extraordinarily severe traffic crashes in china. J. Safety Res. 67, 65–75 (2018)
Article
Google Scholar
Yang, Z., Yu, Q., Zhang, W., Shen, H.: A comparison of experienced and novice drivers’ rear-end collision avoidance maneuvers under urgent decelerating events. Transport. Res. F: Traffic Psychol. Behav. 76, 353–368 (2021)
Article
Google Scholar
Yerkes, R.M., Dodson, J.D., et al.: The relation of strength of stimulus to rapidity of habit-formation (1908)
Google Scholar
Zhou, W., Nan, W., Xiong, K., Ku, Y.: Alpha neurofeedback training improves visual working memory in healthy individuals. npj Science of Learning 9(1), 32 (2024)
Google Scholar