Skip to main content

Improving Driving Performance in Difficult Driving Scenarios Using Personalized Real-Time Neurofeedback

  • Conference paper
  • First Online:
HCI in Mobility, Transport, and Automotive Systems (HCII 2025)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15817))

Included in the following conference series:

  • 223 Accesses

Abstract

Excessive arousal in difficult driving scenarios is a major contributor to traffic accidents. To address this issue, this study proposes a novel method that leverages personalized neurofeedback to modulate driver arousal in real-time. Firstly, by analyzing the relationship between pupil size and reaction time, the Yerkes-Dodson law was validated. Additionally, a cascade model structure was implemented to develop an EEG-based arousal decoder, achieving an arousal recognition accuracy of 74.8%. Secondly,  the real-time generic neurofeedback was demonstrated to help a driver manage over-arousal in difficult driving scenarios. Compared to both silence and sham control conditions, the generic neurofeedback significantly extended crash-free driving time. Notably, when comparing real-time neurofeedback to silence alone, the average driving duration increased by 7.95%. Finally, instead of continuous feedback in generic neurofeedback, this study proposes a Markov decision process (MDP) framework to tailor neurofeedback strategies according to individual differences in workload and arousal. Unlike the continuous generic feedback, the MDP-based approach delivers feedback intermittently. Results indicated that the MDP-based approach further improved driving performance and stabilized arousal levels. Compared to a generic neurofeedback, the MDP strategy yielded an additional 10% increase in average driving time.

The findings highlight the feasibility of incorporating EEG-derived arousal states into an adaptive neurofeedback system, confirming that personalized neurofeedback helps drivers maintain optimal arousal under difficult driving conditions, ultimately reducing driving errors and promoting safer road performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
€34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 69.54
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 87.73
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

') var buybox = document.querySelector("[data-id=id_"+ timestamp +"]").parentNode var buyingOptions = buybox.querySelectorAll(".buying-option") ;[].slice.call(buyingOptions).forEach(initCollapsibles) var buyboxMaxSingleColumnWidth = 480 function initCollapsibles(subscription, index) { var toggle = subscription.querySelector(".buying-option-price") subscription.classList.remove("expanded") var form = subscription.querySelector(".buying-option-form") var priceInfo = subscription.querySelector(".price-info") var buyingOption = toggle.parentElement if (toggle && form && priceInfo) { toggle.setAttribute("role", "button") toggle.setAttribute("tabindex", "0") toggle.addEventListener("click", function (event) { var expandedBuyingOptions = buybox.querySelectorAll(".buying-option.expanded") var buyboxWidth = buybox.offsetWidth ;[].slice.call(expandedBuyingOptions).forEach(function(option) { if (buyboxWidth buyboxMaxSingleColumnWidth) { toggle.click() } else { if (index === 0) { toggle.click() } else { toggle.setAttribute("aria-expanded", "false") form.hidden = "hidden" priceInfo.hidden = "hidden" } } }) } initialStateOpen() if (window.buyboxInitialised) return window.buyboxInitialised = true initKeyControls() })()

Institutional subscriptions

Similar content being viewed by others

References

  1. Akaike, H.: A new look at the statistical model identification. IEEE Trans. Autom. Control 19(6), 716–723 (1974)

    Article  MathSciNet  Google Scholar 

  2. Alkoby, O., Abu-Rmileh, A., Shriki, O., Todder, D.: Can we predict who will respond to neurofeedback? a review of the inefficacy problem and existing predictors for successful eeg neurofeedback learning. Neuroscience 378, 155–164 (2018)

    Article  Google Scholar 

  3. Beerendonk, L., Mejías, J.F., Nuiten, S.A., de Gee, J.W., Fahrenfort, J.J., van Gaal, S.: A disinhibitory circuit mechanism explains a general principle of peak performance during mid-level arousal. Proc. Natl. Acad. Sci. 121(5), e2312898121 (2024)

    Article  Google Scholar 

  4. Beri, D., Reddy, K.J.: Physiological correlates of arousal: a metaanalytic review. J. Neurol. Neurosci. 10(4), 302 (2019)

    Article  Google Scholar 

  5. Berntson, G.G., Cacioppo, J.T.: Heart rate variability: stress and psychiatric conditions. Dyn. Electrocardiography 57–64 (2004)

    Google Scholar 

  6. Borghini, G., Astolfi, L., Vecchiato, G., Mattia, D., Babiloni, F.: Measuring neurophysiological signals in aircraft pilots and car drivers for the assessment of mental workload, fatigue and drowsiness. Neurosci. Biobehav. Rev. 44, 58–75 (2014)

    Article  Google Scholar 

  7. Chen, M.A., Spanton, K., van Schaik, P., Spears, I., Eaves, D.: The effects of biofeedback on performance and technique of the boxing jab. Percept. Mot. Skills 128(4), 1607–1622 (2021)

    Article  Google Scholar 

  8. Dargahi Nobari, K., Bartsch, K., Albers, F., Bertram, T.: Driver state regulation via real-time neurofeedback in partially automated driving. In: 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC), IEEE, Piscataway (2020). https://doi.org/10.1109/itsc45102

  9. Electrophysiology, T.F.o.t.E.S.o.C.t.N.A.S.o.P.: Heart rate variability: standards of measurement, physiological interpretation, and clinical use. Circulation 93(5), 1043–1065 (1996)

    Google Scholar 

  10. Escolano, C., Aguilar, M., Minguez, J.: Eeg-based upper alpha neurofeedback training improves working memory performance. In: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 2327–2330. IEEE (2011)

    Google Scholar 

  11. Faller, J., Cummings, J., Saproo, S., Sajda, P.: Regulation of arousal via online neurofeedback improves human performance in a demanding sensory-motor task. Proc. Natl. Acad. Sci. 116(13), 6482–6490 (2019)

    Article  Google Scholar 

  12. Hanslmayr, S., et al.: Visual discrimination performance is related to decreased alpha amplitude but increased phase locking. Neurosci. Lett. 375(1), 64–68 (2005)

    Article  Google Scholar 

  13. Käthner, I., Wriessnegger, S.C., Müller-Putz, G.R., Kübler, A., Halder, S.: Effects of mental workload and fatigue on the p300, alpha and theta band power during operation of an erp (p300) brain-computer interface. Biol. Psychol. 102, 118–129 (2014)

    Article  Google Scholar 

  14. Keynan, J.N., et al.: Electrical fingerprint of the amygdala guides neurofeedback training for stress resilience. Nat. Hum. Behav. 3(1), 63–73 (2019)

    Article  Google Scholar 

  15. Lohani, M., Payne, B.R., Strayer, D.L.: A review of psychophysiological measures to assess cognitive states in real-world driving. Front. Hum. Neurosci. 13, 57 (2019)

    Article  Google Scholar 

  16. Lubianiker, N., et al.: Process-based framework for precise neuromodulation. Nat. Hum. Behav. 3(5), 436–445 (2019)

    Article  Google Scholar 

  17. Minder, F., Zuberer, A., Brandeis, D., Drechsler, R.: Informant-related effects of neurofeedback and cognitive training in children with adhd including a waiting control phase: a randomized-controlled trial. Eur. Child Adolescent Psychiatry 27, 1055–1066 (2018)

    Article  Google Scholar 

  18. Nobari, K.D., Bartsch, K., Albers, F., Bertram, T.: Driver state regulation via real-time neurofeedback in partially automated driving. In: 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC), pp. 1–6. IEEE (2020)

    Google Scholar 

  19. Organization, W.H.: Global Status Report on Road Safety 2023. World Health Organization, 1st ed edn. (2024)

    Google Scholar 

  20. Parsons, B., Faubert, J.: Enhancing learning in a perceptual-cognitive training paradigm using eeg-neurofeedback. Sci. Rep. 11(1), 4061 (2021)

    Article  Google Scholar 

  21. Pawar, N.M., Velaga, N.R.: Effect of time pressure on steering control of the drivers in a car-following situation. Transport. Res. F: Traffic Psychol. Behav. 80, 218–236 (2021)

    Article  Google Scholar 

  22. Podvalny, E., King, L.E., He, B.J.: Spectral signature and behavioral consequence of spontaneous shifts of pupil-linked arousal in human. Elife 10, e68265 (2021)

    Google Scholar 

  23. Pusenjak, N., Grad, A., Tusak, M., Leskovsek, M., Schwarzlin, R.: Can biofeedback training of psychophysiological responses enhance athletes’ sport performance? a practitioner’s perspective. Phys. Sportsmed. 43(3), 287–299 (2015)

    Article  Google Scholar 

  24. Wang, X., Piñol, R.A., Byrne, P., Mendelowitz, D.: Optogenetic stimulation of locus ceruleus neurons augments inhibitory transmission to parasympathetic cardiac vagal neurons via activation of brainstem \(\alpha \)1 and \(\beta \)1 receptors. J. Neurosci. 34(18), 6182–6189 (2014)

    Article  Google Scholar 

  25. Wang, Y.T., et al.: Developing an eeg-based on-line closed-loop lapse detection and mitigation system. Front. Neurosci. 8, 321 (2014)

    Article  Google Scholar 

  26. Xiang, M.Q., Hou, X.H., Liao, B.G., Liao, J.W., Hu, M.: The effect of neurofeedback training for sport performance in athletes: a meta-analysis. Psychol. Sport Exerc. 36, 114–122 (2018)

    Article  Google Scholar 

  27. Xu, C., Bao, J., Wang, C., Liu, P.: Association rule analysis of factors contributing to extraordinarily severe traffic crashes in china. J. Safety Res. 67, 65–75 (2018)

    Article  Google Scholar 

  28. Yang, Z., Yu, Q., Zhang, W., Shen, H.: A comparison of experienced and novice drivers’ rear-end collision avoidance maneuvers under urgent decelerating events. Transport. Res. F: Traffic Psychol. Behav. 76, 353–368 (2021)

    Article  Google Scholar 

  29. Yerkes, R.M., Dodson, J.D., et al.: The relation of strength of stimulus to rapidity of habit-formation (1908)

    Google Scholar 

  30. Zhou, W., Nan, W., Xiong, K., Ku, Y.: Alpha neurofeedback training improves visual working memory in healthy individuals. npj Science of Learning 9(1), 32 (2024)

    Google Scholar 

Download references

Acknowledgement

This study was supported by the National Natural Science Foundation Project (grant 52302442) and the National Natural Science Foundation Project (grant 52125208).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lishengsha Yue .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shi, J., Zhang, Z., Yue, L., Jia, T., Yufeng, Y. (2025). Improving Driving Performance in Difficult Driving Scenarios Using Personalized Real-Time Neurofeedback. In: Krömker, H. (eds) HCI in Mobility, Transport, and Automotive Systems. HCII 2025. Lecture Notes in Computer Science, vol 15817. Springer, Cham. https://doi.org/10.1007/978-3-031-92689-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-92689-1_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-92688-4

  • Online ISBN: 978-3-031-92689-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics