Noh, M., Ulrich, P.: Querying fashion professionals’ forecasting practices: the Delphi method. Int. J. Fashion Des. Technol. Educ. 6(1), 63–70 (2013). https://doi.org/10.1080/17543266.2013.765510
Article
Google Scholar
Danica, F.-H., Tamara, D., May, D., Meta, N., Mitja, H.F.: Delphi method: strengths and weaknesses. Adv. Meth. Stat. 16(2), 1-19. (2019). https://doi.org/10.51936/fcfm6982
Ray, S.: A quick review of machine learning algorithms. In: 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon), Faridabad, India, pp. 35–39 (2019). https://doi.org/10.1109/COMITCon.2019.8862451
LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015). https://doi.org/10.1038/nature14539
Article
Google Scholar
Amjoud, A.B., Amrouch, M.: Object detection using deep learning, CNNs and vision transformers: a review. IEEE Access 11, 35479–35516 (2023). https://doi.org/10.1109/ACCESS.2023.3266093
Article
Google Scholar
Sagiroglu, S., Sinanc, D.: Big data: a review. In: 2013 International Conference on Collaboration Technologies and Systems (CTS), San Diego, CA, USA, pp. 42–47 (2013). https://doi.org/10.1109/CTS.2013.6567202
Bailly, A., et al.: Effects of dataset size and interactions on the prediction performance of logistic regression and deep learning models. Comput. Methods Programs Biomed. 213, 106504 (2022). https://doi.org/10.1016/j.cmpb.2021.106504
Article
Google Scholar
Luo, C., Li, X., Wang, L., He, J., Li, D., Zhou, J.: How does the data set affect CNN-based image classification performance?. In: 2018 5th International Conference on Systems and Informatics (ICSAI), Nanjing, China, pp. 361–366 (2018). https://doi.org/10.1109/ICSAI.2018.8599448
Steinberg, L.: Risk taking in adolescence: what changes, and why? Ann. N. Y. Acad. Sci. 1021(1), 51–58 (2006). https://doi.org/10.1196/annals.1308.005
Article
Google Scholar
Ge, Y., Zhang, R., Wu, L., Wang, X., Tang, X., Luo, P.: A versatile benchmark for detection, pose estimation, segmentation and re-identification of clothing images. CVPR (2019). https://arxiv.org/pdf/1901.07973.pdf
Choi, S., Park, S., Lee, M., Choo, J.: VITON-HD: high-resolution virtual try-on via misalignment-aware normalization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, pp. 20–25 June 2021
Google Scholar
Jocher, G., Chaurasia, A., Qiu, J.: YOLO by Ultralytics (2023). https://github.com/ultralytics/ultralytics. Accessed: 30 Feb. 2023
Dwyer, B., Nelson, J., Hansen, T., et. al.: Roboflow (Version 1.0) [Software]. (2024). https://roboflow.com. computer vision
Cartner-Morley, J.: Equal parts practical and daring: how mary quant created look for a new way of living. The Guardian. (2023, April 13). https://www.theguardian.com/fashion/2023/apr/13/equal-parts-practical-and-daring-how-mary-quant-created-look-for-a-new-way-of-living
Atik, D., Cavusoglu, L., Ozdamar Ertekin, Z., Fırat, A.F.: Fashion, consumer markets, and democratization. J. Consum. Behav. 21(5), 1135–1148 (2022)
Article
Google Scholar
Kuipers, G., Brans, L., Carbone, L.: The myth of trickle-down: How fashions do (not) spread in European fashion magazines, and what this tells us about power and status in the global fashion system. In: Fashion’s Transnational Inequalities (pp. 114–142) (2023) Routledge
Google Scholar
Crofton, S., Dopico, L.: Zara-Inditex and the growth of fast fashion. Essays Econ. Bus. Hist. 25, 41–54 (2007)
Google Scholar
Khan, M.M.R., Islam, M.M.: Materials and manufacturing environmental sustainability evaluation of apparel product: knitted T-shirt case study. Text. Clothing Sustain. 1, 1–12 (2015)
Google Scholar
DuBreuil, M., Lu, S.: Traditional vs. big-data fashion trend forecasting: an examination using WGSN and EDITED. Int. J. Fashion Des. Technol. Educ. 13(1), 68–77 (2020)
Google Scholar
Reilly, A., Hawley, J.: Attention deficit fashion. Fashion Style Popular Cult. 6(1), 85–98 (2019)
Article
Google Scholar
Shi, M., Chussid, C., Yang, P., Jia, M., Dyk Lewis, V., Cao, W.: The exploration of artificial intelligence application in fashion trend forecasting. Text. Res. J. 91(19–20), 2357–2386 (2021)
Article
Google Scholar
Zahna, M., Douglas, P., Perrin, Ph.D.a,b,*: Efficient human-in-loop deep learning model training with iterative refinement and statistical result validation (2023, April 3)
Google Scholar
Long, X., et al.: PP-YOLO: an effective and efficient implementation of object detector. arXiv. (2020). https://doi.org/10.48550/arXiv.2007.12099
Shorten, C., Khoshgoftaar, T.M.: A survey on image data augmentation for deep learning. J Big Data 6, 60 (2019). https://doi.org/10.1186/s40537-019-0197-0
Article
Google Scholar