Skip to main content

A Novel Interactive Slime Mould Algorithm-Based Platform for Generative Art and Optimization

  • Conference paper
  • First Online:
Culture and Computing (HCII 2025)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15800))

Included in the following conference series:

  • 233 Accesses

Abstract

This study offers a new platform using the Slime Mould Algorithm (SMA) to let people generate complex visual designs via interactive simulations. Designed with WebGL and Three.js, the platform replicates multi-agent chemotaxis motivated by the dynamic adaptability of slime mould Physarum polycephalum. Two fundamental processes underlie the platform: a tailored text generating weight system and a tailored image fitting weight system. These mechanisms let users adjust pixel weightings, therefore guiding particles to create emergent, complex designs. Providing both accessibility for non-technical users and great degrees of creative flexibility, the platform combines computer graphics, visual arts, and computational physics. The system lets the development of original, changing artworks by integrating real-time input with dynamic rendering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
€34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 60.98
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 79.17
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

') var buybox = document.querySelector("[data-id=id_"+ timestamp +"]").parentNode var buyingOptions = buybox.querySelectorAll(".buying-option") ;[].slice.call(buyingOptions).forEach(initCollapsibles) var buyboxMaxSingleColumnWidth = 480 function initCollapsibles(subscription, index) { var toggle = subscription.querySelector(".buying-option-price") subscription.classList.remove("expanded") var form = subscription.querySelector(".buying-option-form") var priceInfo = subscription.querySelector(".price-info") var buyingOption = toggle.parentElement if (toggle && form && priceInfo) { toggle.setAttribute("role", "button") toggle.setAttribute("tabindex", "0") toggle.addEventListener("click", function (event) { var expandedBuyingOptions = buybox.querySelectorAll(".buying-option.expanded") var buyboxWidth = buybox.offsetWidth ;[].slice.call(expandedBuyingOptions).forEach(function(option) { if (buyboxWidth buyboxMaxSingleColumnWidth) { toggle.click() } else { if (index === 0) { toggle.click() } else { toggle.setAttribute("aria-expanded", "false") form.hidden = "hidden" priceInfo.hidden = "hidden" } } }) } initialStateOpen() if (window.buyboxInitialised) return window.buyboxInitialised = true initKeyControls() })()

Institutional subscriptions

Similar content being viewed by others

References

  1. Li, S., Chen, H., Wang, M., Heidari, A., Mirjalili, S.: Slime mould algorithm: a new method for stochastic optimization. Future Gener. Comput. Syst. 111, 300–323 (2020)

    Article  Google Scholar 

  2. Kamboj, V., et al.: A cost-effective solution for non-convex economic load dispatch problems in power systems using slime mould algorithm. Sustainability 14(5), 2586 (2022)

    Article  Google Scholar 

  3. Tang, A., Tang, S., Han, T., Zhou, H., Xie, L.: A modified slime mould algorithm for global optimization. Comput. Intell. Neurosci. 1–14 (2021)

    Google Scholar 

  4. Chen, H., Li, X., Li, S., Zhao, Y., Dong, J.: Improved slime mould algorithm hybridizing chaotic maps and differential evolution strategy for global optimization. IEEE Access 10, 66811–66830 (2022)

    Article  Google Scholar 

  5. Mostafa, M., Rezk, H., Aly, M., Ahmed, E.: A new strategy based on slime mould algorithm to extract the optimal model parameters of solar PV panel. Sustain. Energy Technol. Assess. 42, 100849 (2020)

    Google Scholar 

  6. Premkumar, M., Jangir, P., Sowmya, R., Alhelou, H., Heidari, A., Chen, H.: MOSMA: multi-objective slime mould algorithm based on elitist non-dominated sorting. IEEE Access 9, 3229–3248 (2021)

    Article  Google Scholar 

  7. Houssein, E., Mahdy, M., Blondin, M., Shebl, D., Mohamed, W.: Hybrid slime mould algorithm with adaptive guided differential evolution algorithm for combinatorial and global optimization problems. Expert Syst. Appl. 174, 114689 (2021)

    Article  Google Scholar 

  8. Zhang, X., Gao, C., Deng, Y., Zhang, Z.: Slime mould inspired applications on graph-optimization problems. In: Unconventional Computation and Natural Computation, pp. 519–562 (2016)

    Google Scholar 

  9. Wei, Y., Othman, Z., Daud, K., Luo, Q., Zhou, Y.: Advances in slime mould algorithm: a comprehensive survey. Biomimetics 9(1), 31 (2024)

    Article  Google Scholar 

  10. Greenberg, J., Alt, W.: Stability results for a diffusion equation with functional drift approximating a chemotaxis model. Trans. Am. Math. Soc. 300, 235–258 (1987)

    Article  MathSciNet  Google Scholar 

  11. Chalub, F., Dolak-Struss, Y., Markowich, P., Oelz, D., Schmeiser, C., Soreff, A.: Model hierarchies for cell aggregation by chemotaxis. Math. Models Methods Appl. Sci. 16, 1173–1197 (2006)

    Article  MathSciNet  Google Scholar 

  12. Bärwolff, G., Walentiny, D.: Numerical and analytical investigation of chemotaxis models. In: Simulation and Mathematical Methods in Bioeconomics, pp. 3–18 (2018)

    Google Scholar 

  13. Dolak, Y., Schmeiser, C.: Kinetic models for chemotaxis: hydrodynamic limits and spatio-temporal mechanisms. J. Math. Biol. 51, 595–615 (2005)

    Article  MathSciNet  Google Scholar 

  14. Vicker, M., Schill, W., Drescher, K.: Chemoattraction and chemotaxis in Dictyostelium discoideum: myxamoeba cannot read spatial gradients of cyclic adenosine monophosphate. J. Cell Biol. 98, 2204–2214 (1984)

    Article  Google Scholar 

  15. Höfer, T., Maini, P., Sherratt, J., Chaplain, M., Murray, J.: Resolving the chemotactic wave paradox: a mathematical model for chemotaxis of Dictyostelium amoebae. J. Biol. Syst. 3, 967–973 (1995)

    Article  Google Scholar 

  16. McRobbie, S.: Chemotaxis and cell motility in the cellular slime molds. Crit. Rev. Microbiol. 13(4), 335–375 (1986)

    Article  MathSciNet  Google Scholar 

  17. Van Duijn, B., Inouye, K.: Regulation of movement speed by intracellular pH during Dictyostelium discoideum chemotaxis. Proc. Natl. Acad. Sci. U.S.A. 88(11), 4951–4955 (1991)

    Article  Google Scholar 

  18. Li, D., Gao, F.: Improved slime mould algorithm based on Gompertz dynamic probability and Cauchy mutation with application in FJSP. J. Intell. Fuzzy Syst. 44, 10397–10415 (2023)

    Google Scholar 

  19. Qiu, Y., Li, R., Zhang, X.: Simultaneous SVM parameters and feature selection optimization based on improved slime mould algorithm. IEEE Access 12, 18215–18236 (2024)

    Article  Google Scholar 

  20. Xiong, W., Li, D., Zhu, D., Li, R., Lin, Z.: An enhanced slime mould algorithm combines multiple strategies. Axioms 12, 907 (2023)

    Article  Google Scholar 

  21. Zhong, R., Zhang, E., Munetomo, M.: Evolutionary multi-mode slime mould optimization: a hyper-heuristic algorithm inspired by slime mould foraging behaviors. In: 2023 Congress in Computer Science, Computer Engineering Applied Computing (CSCE), pp. 2153–2160 (2023)

    Google Scholar 

  22. Naik, M.K., Panda, R., Abraham, A.: Adaptive opposition slime mould algorithm. Soft. Comput. 25(22), 14297–14313 (2021). https://doi.org/10.1007/s00500-021-06140-2

    Article  Google Scholar 

  23. Barbieux, A., Canaan, R.: EINCASM: emergent intelligence in neural cellular automaton slime molds. arXiv preprint (2023). arXiv:2305.13425

  24. Barnett, H.: The Physarum Experiments (and Being Slime Mould) (2016)

    Google Scholar 

  25. Cameron, A.: Modelling Self-organising Networks with Slime Mould Physarum Polycephalum (2017)

    Google Scholar 

  26. Fleig, P., Kramar, M., Wilczek, M., Alim, K.: Emergence of behaviour in a self-organized living matter network. eLife, 11, e62863 (2022)

    Google Scholar 

  27. Fleig, P., Kramar, M., Wilczek, M., Alim, K.: Emergence of behavior in a self-organized living matter network. bioRxiv 2020.09.06.285080 (2020)

    Google Scholar 

  28. Adamatzky, A.: Physarum Machines: Computers from Slime Mould. World Scientific(2010)

    Google Scholar 

  29. Jones, J.: Emergent Computing Characteristics in Slime Mould (2011). (Unpublished or internal reference)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianghuai Shao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wen, W., Zhang, Y., Xu, J., Wang, S., Shao, J. (2025). A Novel Interactive Slime Mould Algorithm-Based Platform for Generative Art and Optimization. In: Rauterberg, M. (eds) Culture and Computing. HCII 2025. Lecture Notes in Computer Science, vol 15800. Springer, Cham. https://doi.org/10.1007/978-3-031-93160-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-93160-4_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-93159-8

  • Online ISBN: 978-3-031-93160-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics