Li, S., Chen, H., Wang, M., Heidari, A., Mirjalili, S.: Slime mould algorithm: a new method for stochastic optimization. Future Gener. Comput. Syst. 111, 300–323 (2020)
Article
Google Scholar
Kamboj, V., et al.: A cost-effective solution for non-convex economic load dispatch problems in power systems using slime mould algorithm. Sustainability 14(5), 2586 (2022)
Article
Google Scholar
Tang, A., Tang, S., Han, T., Zhou, H., Xie, L.: A modified slime mould algorithm for global optimization. Comput. Intell. Neurosci. 1–14 (2021)
Google Scholar
Chen, H., Li, X., Li, S., Zhao, Y., Dong, J.: Improved slime mould algorithm hybridizing chaotic maps and differential evolution strategy for global optimization. IEEE Access 10, 66811–66830 (2022)
Article
Google Scholar
Mostafa, M., Rezk, H., Aly, M., Ahmed, E.: A new strategy based on slime mould algorithm to extract the optimal model parameters of solar PV panel. Sustain. Energy Technol. Assess. 42, 100849 (2020)
Google Scholar
Premkumar, M., Jangir, P., Sowmya, R., Alhelou, H., Heidari, A., Chen, H.: MOSMA: multi-objective slime mould algorithm based on elitist non-dominated sorting. IEEE Access 9, 3229–3248 (2021)
Article
Google Scholar
Houssein, E., Mahdy, M., Blondin, M., Shebl, D., Mohamed, W.: Hybrid slime mould algorithm with adaptive guided differential evolution algorithm for combinatorial and global optimization problems. Expert Syst. Appl. 174, 114689 (2021)
Article
Google Scholar
Zhang, X., Gao, C., Deng, Y., Zhang, Z.: Slime mould inspired applications on graph-optimization problems. In: Unconventional Computation and Natural Computation, pp. 519–562 (2016)
Google Scholar
Wei, Y., Othman, Z., Daud, K., Luo, Q., Zhou, Y.: Advances in slime mould algorithm: a comprehensive survey. Biomimetics 9(1), 31 (2024)
Article
Google Scholar
Greenberg, J., Alt, W.: Stability results for a diffusion equation with functional drift approximating a chemotaxis model. Trans. Am. Math. Soc. 300, 235–258 (1987)
Article
MathSciNet
Google Scholar
Chalub, F., Dolak-Struss, Y., Markowich, P., Oelz, D., Schmeiser, C., Soreff, A.: Model hierarchies for cell aggregation by chemotaxis. Math. Models Methods Appl. Sci. 16, 1173–1197 (2006)
Article
MathSciNet
Google Scholar
Bärwolff, G., Walentiny, D.: Numerical and analytical investigation of chemotaxis models. In: Simulation and Mathematical Methods in Bioeconomics, pp. 3–18 (2018)
Google Scholar
Dolak, Y., Schmeiser, C.: Kinetic models for chemotaxis: hydrodynamic limits and spatio-temporal mechanisms. J. Math. Biol. 51, 595–615 (2005)
Article
MathSciNet
Google Scholar
Vicker, M., Schill, W., Drescher, K.: Chemoattraction and chemotaxis in Dictyostelium discoideum: myxamoeba cannot read spatial gradients of cyclic adenosine monophosphate. J. Cell Biol. 98, 2204–2214 (1984)
Article
Google Scholar
Höfer, T., Maini, P., Sherratt, J., Chaplain, M., Murray, J.: Resolving the chemotactic wave paradox: a mathematical model for chemotaxis of Dictyostelium amoebae. J. Biol. Syst. 3, 967–973 (1995)
Article
Google Scholar
McRobbie, S.: Chemotaxis and cell motility in the cellular slime molds. Crit. Rev. Microbiol. 13(4), 335–375 (1986)
Article
MathSciNet
Google Scholar
Van Duijn, B., Inouye, K.: Regulation of movement speed by intracellular pH during Dictyostelium discoideum chemotaxis. Proc. Natl. Acad. Sci. U.S.A. 88(11), 4951–4955 (1991)
Article
Google Scholar
Li, D., Gao, F.: Improved slime mould algorithm based on Gompertz dynamic probability and Cauchy mutation with application in FJSP. J. Intell. Fuzzy Syst. 44, 10397–10415 (2023)
Google Scholar
Qiu, Y., Li, R., Zhang, X.: Simultaneous SVM parameters and feature selection optimization based on improved slime mould algorithm. IEEE Access 12, 18215–18236 (2024)
Article
Google Scholar
Xiong, W., Li, D., Zhu, D., Li, R., Lin, Z.: An enhanced slime mould algorithm combines multiple strategies. Axioms 12, 907 (2023)
Article
Google Scholar
Zhong, R., Zhang, E., Munetomo, M.: Evolutionary multi-mode slime mould optimization: a hyper-heuristic algorithm inspired by slime mould foraging behaviors. In: 2023 Congress in Computer Science, Computer Engineering Applied Computing (CSCE), pp. 2153–2160 (2023)
Google Scholar
Naik, M.K., Panda, R., Abraham, A.: Adaptive opposition slime mould algorithm. Soft. Comput. 25(22), 14297–14313 (2021). https://doi.org/10.1007/s00500-021-06140-2
Article
Google Scholar
Barbieux, A., Canaan, R.: EINCASM: emergent intelligence in neural cellular automaton slime molds. arXiv preprint (2023). arXiv:2305.13425
Barnett, H.: The Physarum Experiments (and Being Slime Mould) (2016)
Google Scholar
Cameron, A.: Modelling Self-organising Networks with Slime Mould Physarum Polycephalum (2017)
Google Scholar
Fleig, P., Kramar, M., Wilczek, M., Alim, K.: Emergence of behaviour in a self-organized living matter network. eLife, 11, e62863 (2022)
Google Scholar
Fleig, P., Kramar, M., Wilczek, M., Alim, K.: Emergence of behavior in a self-organized living matter network. bioRxiv 2020.09.06.285080 (2020)
Google Scholar
Adamatzky, A.: Physarum Machines: Computers from Slime Mould. World Scientific(2010)
Google Scholar
Jones, J.: Emergent Computing Characteristics in Slime Mould (2011). (Unpublished or internal reference)
Google Scholar