Skip to main content

Recognizing Artistic Style of Archaeological Image Fragments Using Deep Style Extrapolation

  • Conference paper
  • First Online:
Culture and Computing (HCII 2025)

Abstract

Ancient artworks obtained in archaeological excavations usually suffer from a certain degree of fragmentation and physical degradation. Often, fragments of multiple artifacts from different periods or artistic styles could be found on the same site. With each fragment containing only partial information about its source, and pieces from different objects being mixed, categorizing broken artifacts based on their visual cues could be a challenging task, even for professionals. As classification is a common function of many machine learning models, the power of modern architectures can be harnessed for efficient and accurate fragment classification. In this work, we present a generalized deep-learning framework for predicting the artistic style of image fragments, achieving state-of-the-art results for pieces with varying styles and geometries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from €39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 60.98
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 79.17
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

') var buybox = document.querySelector("[data-id=id_"+ timestamp +"]").parentNode var buyingOptions = buybox.querySelectorAll(".buying-option") ;[].slice.call(buyingOptions).forEach(initCollapsibles) var buyboxMaxSingleColumnWidth = 480 function initCollapsibles(subscription, index) { var toggle = subscription.querySelector(".buying-option-price") subscription.classList.remove("expanded") var form = subscription.querySelector(".buying-option-form") var priceInfo = subscription.querySelector(".price-info") var buyingOption = toggle.parentElement if (toggle && form && priceInfo) { toggle.setAttribute("role", "button") toggle.setAttribute("tabindex", "0") toggle.addEventListener("click", function (event) { var expandedBuyingOptions = buybox.querySelectorAll(".buying-option.expanded") var buyboxWidth = buybox.offsetWidth ;[].slice.call(expandedBuyingOptions).forEach(function(option) { if (buyboxWidth buyboxMaxSingleColumnWidth) { toggle.click() } else { if (index === 0) { toggle.click() } else { toggle.setAttribute("aria-expanded", "false") form.hidden = "hidden" priceInfo.hidden = "hidden" } } }) } initialStateOpen() if (window.buyboxInitialised) return window.buyboxInitialised = true initKeyControls() })()

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    See implementation at https://github.com/ICVL-BGU/Fragment-Style-Recognition.

  2. 2.

    Download the POMPAAF dataset at https://tinyurl.com/ynwc6ymm.

References

  1. Ambler, D.J.L.: Roman wall painting styles (2018). https://smarthistory.org/roman-wall-painting-styles/. Accessed 17 June 2024

  2. Andalo, F., Taubin, G., Goldenstein, S.: PSQP: puzzle solving by quadratic programming. IEEE PAMI 39(2), 385–396 (2016)

    Article  Google Scholar 

  3. Berry, J.: The Complete Pompeii. Thames & Hudson, London (2013)

    Google Scholar 

  4. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)

    Article  Google Scholar 

  5. Cascone, L., Dondi, P., Lombardi, L., Narducci, F.: Automatic classification of fresco fragments: a machine and deep learning study. In: International Conference on Image Analysis and Processing, pp. 701–712. Springer, Cham (2022)

    Google Scholar 

  6. Cascone, L., Nappi, M., Narducci, F., Russo, S.L.: Classification of fragments: recognition of artistic style. J. Ambient. Intell. Humaniz. Comput. 14(4), 4087–4097 (2023)

    Article  Google Scholar 

  7. Chawla, P., Jandial, S., Badjatiya, P., Chopra, A., Sarkar, M., Krishnamurthy, B.: Leveraging style and content features for text conditioned image retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3978–3982 (2021)

    Google Scholar 

  8. Clarke, J.R.: The Houses of Roman Italy, 100 B.C.-A.D. 250: Ritual, Space, and Decoration. University of California Press, Los Angeles (1991). Explores how the preservation of Pompeiian art provides insights into Roman culture and civilization

    Google Scholar 

  9. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  10. Dondi, P., Lombardi, L., Setti, A.: Dafne: a dataset of fresco fragments for digital anastlylosis. Pattern Recogn. Lett. 138, 631–637 (2020)

    Article  Google Scholar 

  11. Dosovitskiy, A., et al.: An image is worth \(16 \times 16\) words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  12. Gatys, L.A., Ecker, A.S., Bethge, M.: Image style transfer using convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2414–2423 (2016)

    Google Scholar 

  13. Harel, P., Shahar, O.I., Ben-Shahar, O.: Pictorial and apictorial polygonal jigsaw puzzles from arbitrary number of crossing cuts. Int. J. Comput. Vis. (2024)

    Google Scholar 

  14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  15. Karayev, S., et al.: Recognizing image style. arXiv preprint arXiv:1311.3715 (2013)

  16. Lecoutre, A., Negrevergne, B., Yger, F.: Recognizing art style automatically in painting with deep learning. In: Asian Conference on Machine Learning, pp. 327–342. PMLR (2017)

    Google Scholar 

  17. Li, Y., Wang, N., Liu, J., Hou, X.: Demystifying neural style transfer. arXiv preprint arXiv:1701.01036 (2017)

  18. Ling, R.: Roman Painting. Cambridge University Press, New York (1991)

    Google Scholar 

  19. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021)

    Google Scholar 

  20. Lorenz, K.G.: The social life of painting in ancient Rome and on the bay of Naples (review). Am. J. Philol. 126(4 (Whole Number 504)), 626–629 (2005). https://doi.org/10.1353/ajp.2006.0010. https://www.researchgate.net/publication/236824125_The_Social_Life_of_Painting_in_Ancient_Rome_and_on_the_Bay_of_Naples_review

  21. Lugmayr, A., Danelljan, M., Romero, A., Yu, F., Timofte, R., Van Gool, L.: Repaint: inpainting using denoising diffusion probabilistic models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11461–11471 (2022)

    Google Scholar 

  22. Mau, A.: Geschichte der decorativen Wandmalerei in Pompeji. Reimer, Berlin (1882)

    Book  Google Scholar 

  23. Mau, A.: Pompeii: Its Life and Art. The MacMillan Company, New York (1902)

    Google Scholar 

  24. Napolitano, M., et al.: The dataset of paintings from the pompeii archive: a task of the repair project. In: Proceedings of Pictura Parietum. Connessioni mediterranee in età ellenistica e romana (AIRPA VI), Agrigento, Italy (2023)

    Google Scholar 

  25. Paikin, G., Tal, A.: Solving multiple square jigsaw puzzles with missing pieces. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4832–4839 (2015)

    Google Scholar 

  26. Pomeranz, D., Shemesh, M., Ben-Shahar, O.: A fully automated greedy square jigsaw puzzle solver. In: CVPR 2011, pp. 9–16. IEEE (2011)

    Google Scholar 

  27. Rasheed, N.A., Nordin, M.J.: Classification and reconstruction algorithms for the archaeological fragments. J. King Saud Univ. Comput. Inf. Sci. 32(8), 883–894 (2020)

    Article  Google Scholar 

  28. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  29. Smith, P., Bespalov, D., Shokoufandeh, A., Jeppson, P.: Classification of archaeological ceramic fragments using texture and color descriptors. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition-Workshops, pp. 49–54. IEEE (2010)

    Google Scholar 

  30. Son, K., Hays, J., Cooper, D.: Solving square jigsaw puzzle by hierarchical loop constraints. IEEE Trans. Pattern Anal. Mach. Intell. 41, 2222–2235 (2019)

    Article  Google Scholar 

  31. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

    Google Scholar 

  32. Tan, M., Le, Q.: Efficientnet: rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning, pp. 6105–6114. PMLR (2019)

    Google Scholar 

  33. Tsesmelis, T., et al.: Re-assembling the past: the repair dataset and benchmark for realistic 2D and 3D puzzle solving. In: Advances in Neural Information Processing Systems, vol. 37 (2024)

    Google Scholar 

  34. Wallraven, C., Fleming, R., Cunningham, D., Rigau, J., Feixas, M., Sbert, M.: Categorizing art: comparing humans and computers. Comput. Graph. 33(4), 484–495 (2009)

    Article  Google Scholar 

  35. Willats, J., Durand, F.: Defining pictorial style: lessons from linguistics and computer graphics. Axiomathes 15(3), 319–351 (2005)

    Article  Google Scholar 

  36. Yang, K., Cao, X., Geng, G., Li, K., Zhou, M.: Classification of 3D terracotta warriors fragments based on geospatial and texture information. J. Visual. 24, 251–259 (2021)

    Article  Google Scholar 

  37. Zanker, P.: Pompeii: Public and Private Life. Harvard University Press, Cambridge, MA (1998). Discusses the impact of the eruption of Mount Vesuvius on the preservation of Pompeii

    Google Scholar 

Download references

Acknowledgments

This work has been funded in part by the European Union’s Horizon 2020 research and innovation programme under grant agreement No 964854 (the RePAIR project). We also thank the Helmsley Charitable Trust through the ABC Robotics Initiative and the Frankel Fund of the Computer Science Department at Ben-Gurion University for their generous support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ohad Ben-Shahar .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Elkin, G., Shahar, O.I., Ohayon, Y., Alali, N., Ben-Shahar, O. (2025). Recognizing Artistic Style of Archaeological Image Fragments Using Deep Style Extrapolation. In: Rauterberg, M. (eds) Culture and Computing. HCII 2025. Lecture Notes in Computer Science, vol 15800. Springer, Cham. https://doi.org/10.1007/978-3-031-93160-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-93160-4_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-93159-8

  • Online ISBN: 978-3-031-93160-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics