Agrawal, P., Nair, A.V., Abbeel, P., Malik, J., Levine, S.: Learning to poke by poking: experiential learning of intuitive physics. In: Lee, D., Sugiyama, M., Luxburg, U., Guyon, I., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 29. Curran Associates, Inc. (2016)
Google Scholar
Ajay, A., Du, Y., Gupta, A., Tenenbaum, J., Jaakkola, T., Agrawal, P.: Is conditional generative modeling all you need for decision-making? arXiv preprint arXiv:2211.15657 (2022)
Arkin, R.C.: Ethics and autonomous systems: perils and promises [point of view]. Proc. IEEE 104(10), 1779–1781 (2016). https://doi.org/10.1109/JPROC.2016.2601162
Article
Google Scholar
Brown, S.D., Heathcote, A.: The simplest complete model of choice response time: linear ballistic accumulation. Cogn. Psychol. 57(3), 153–178 (2008). https://doi.org/10.1016/j.cogpsych.2007.12.002
Article
Google Scholar
Castrejon, A.M.: Afrl’s xq-67a makes 1st successful flight (2024). https://www.af.mil/News/Article-Display/Article/3694599/afrls-xq-67a-makes-1st-successful-flight/
Chi, C., et al.: Diffusion policy: visuomotor policy learning via action diffusion. Int. J. Robot. Res. (2024). https://doi.org/10.1177/02783649241273668
Article
Google Scholar
Clark, R.E., Feldon, D.F., Van Merrienboer, J.J., Yates, K.A., Early, S.: Cognitive task analysis. In: Jonassen, D., Spector, M.J., Driscoll, M., Merrill, M.D., van Merrienboer, J., Driscoll, M.P. (eds.) Handbook of Research on Educational Communications and Technology, 3 edn., pp. 577–593. Routledge (2008)
Google Scholar
Endsley, M.: Toward a theory of situation awarenss in dynamic systems. Hum. Factors 37, 32–64 (1995). https://doi.org/10.1518/001872095779049543
Article
Google Scholar
Engström, J., Markkula, G., Victor, T., Merat, N.: Effects of cognitive load on driving performance: the cognitive control hypothesis. Hum. Factors 59(5), 734–764 (2017). https://doi.org/10.1177/0018720817690639
Article
Google Scholar
Fossaceca, J.M.: Delivering on the promise of autonomous agents in the battlefield. In: Solomon, L., Schwartz, P.J. (eds.) Artificial Intelligence and Machine Learning for Multi-Domain Operations Applications, vol. 12538, p. 1253816. International Society for Optics and Photonics, SPIE (2023). https://doi.org/10.1117/12.2663186
Gray, W.D., Boehm-Davis, D.A.: Milliseconds matter: an introduction to microstrategies and to their use in describing and predicting interactive behavior. J. Exp. Psychol. Appl. 6(4), 322–335 (2000). https://doi.org/10.1037/1076-898X.6.4.322
Article
Google Scholar
Gray, W.D., John, B.E., Atwood, M.E.: Project Ernestine: validating a GOMS analysis for predicting and explaining real-world task performance. Hum.-Comput. Interact. 8(3), 237–309 (1993). https://doi.org/10.1207/s15327051hci0803_3
Article
Google Scholar
Hancock, P.A.: Some pitfalls in the promises of automated and autonomous vehicles. Ergonomics 62(4), 479–495 (2019). https://doi.org/10.1080/00140139.2018.1498136
Article
Google Scholar
Hart, S.G.: NASA-task load index (NASA-TLX); 20 years later. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting. vol. 50, pp. 904–908. Sage publications Sage CA: Los Angeles, CA (2006). https://doi.org/10.1177/15419312060500090
Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., Lin, H. (eds.) Advances in Neural Information Processing Systems, vol. 33, pp. 6840–6851. Curran Associates, Inc. (2020)
Google Scholar
John, B.E.: Extensions of GOMS analyses to expert performance requiring perception of dynamic visual and auditory information. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 107–116 (1990)
Google Scholar
Kirwan, B., Ainsworth, L.K.: A Guide to Task Analysis. CRC Press (1992). https://doi.org/10.1201/b16826
Kortum, P., Byrne, M.D.: The importance of psychological science in a voter’s ability to cast a vote. Curr. Directions Psychol. Sci. 25 (2016). https://doi.org/10.1177/0963721416665104
Laird, J.E., Lebiere, C., Rosenbloom, P.S.: A standard model of the mind: toward a common computational framework across artificial intelligence, cognitive science, neuroscience, and robotics. AI Mag. 38(4), 13–26 (2017). https://doi.org/10.1609/aimag.v38i4.2744
Article
Google Scholar
Levine, S., Kumar, A., Tucker, G., Fu, J.: Offline reinforcement learning: tutorial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643 (2020)
Mumaw, R.J.: Not automation failures, but automation interface failures. J. Cogn. Eng. Decis. Making 15553434241228796 (2024). https://doi.org/10.1177/15553434241228796
Newell, A.: Human Problem Solving. Prentice Hall, Upper Saddle River (1972)
Google Scholar
O’Neill, T., McNeese, N., Barron, A., Schelble, B.: Human-autonomy teaming: a review and analysis of the empirical literature. Hum. Factors 64(5), 904–938 (2022). https://doi.org/10.1177/001872082096086
Article
Google Scholar
Parasuraman, R., Sheridan, T.B., Wickens, C.D.: A model for types and levels of human interaction with automation. IEEE Trans. Syst. Man Cybern. - Part A: Syst. Hum. 30(3), 286–297 (2000). https://doi.org/10.1109/3468.844354
Article
Google Scholar
Park, J., Wozniak, D., Zahabi, M.: Modeling novice law enforcement officers’ interaction with in-vehicle technology. Appl. Ergon. 114, 104154 (2024). https://doi.org/10.1016/j.apergo.2023.104154
Article
Google Scholar
Patton, E.W., Gray, W.D.: SANLab-CM: a tool for incorporating stochastic operations into activity network modeling. Behav. Res. Methods 42(3), 877–883 (2010). https://doi.org/10.3758/BRM.42.3.877
Article
Google Scholar
Pearce, T., et al.: Imitating human behaviour with diffusion models. arXiv preprint arXiv:2301.10677 (2023)
Pütz, S., Mertens, A., Chuang, L.L., Nitsch, V.: Physiological predictors of operator performance: the role of mental effort and its link to task performance. Hum. Factors 00187208241296830 (2024). https://doi.org/10.1177/00187208241296830
Ratcliff, R.: A theory of memory retrieval. Psychol. Rev. 85(2), 59–108 (1978). https://doi.org/10.1037/0033-295X.85.2.59
Article
Google Scholar
Ratcliff, R., Smith, P.L., Brown, S.D., McKoon, G.: Diffusion decision model: current issues and history. Trends Cogn. Sci. 20(4), 260–281 (2016). https://doi.org/10.1016/j.tics.2016.01.007
Article
Google Scholar
Rouse, W.B.: Human-computer interaction in multitask situations. IEEE Trans. Syst. Man Cybern. 7 (1977). https://doi.org/10.1109/TSMC.1977.4309727
Sheridan, T.B.: Human Supervisory Control, chap. 34, pp. 990–1015. Wiley (2012). https://doi.org/10.1002/9781118131350.ch34
Sheridan, T.B.: Human Supervisory Control of Automation, chap. 28, pp. 736–760. Wiley (2021). https://doi.org/10.1002/9781119636113.ch28
Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., Ganguli, S.: Deep unsupervised learning using nonequilibrium thermodynamics. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 2256–2265. PMLR, Lille, France (2015)
Google Scholar
Stevens, C.A., Morris, M.B., Fisher, C.R., Myers, C.W.: Profiling cognitive workload in an unmanned vehicle control task with cognitive models and physiological metrics. Mil. Psychol. 35(6), 507–520 (2023). https://doi.org/10.1080/08995605.2022.2130673
Article
Google Scholar
Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. A Bradford Book, Cambridge (2018)
Google Scholar
Taatgen, N.A.: A model of individual differences in skill acquisition in the Kanfer-Ackerman air traffic control task. Cogn. Syst. Res. 3(1), 103–112 (2002). https://doi.org/10.1016/S1389-0417(01)00049-3
Article
Google Scholar
Watkins, C.J., Dayan, P.: Q-learning. Mach. Learn. 8, 279–292 (1992). https://doi.org/10.1007/BF00992698
Article
Google Scholar