Skip to main content

Optimizing Human-Autonomy Interaction: A Proposed Methodology

  • Conference paper
  • First Online:
Augmented Cognition (HCII 2025)

Abstract

Systems are currently available across a range of autonomy levels, though many may never be fully autonomous (i.e., Level 5, Society of Automotive Engineers International). Consequently, autonomous systems will require human supervisory control & resource management, further requiring designed artifacts for interaction. Connecting human operator input to discrete operations used by autonomous systems enables levels of automation that allow for cooperation and performance augmentation [23, 24] and can facilitate analyses to improve operator efficiency (e.g., [12]). Here, we introduce methods for characterizing complex, goal-driven behavior and determining critical paths that optimize interactions between human operators and artifacts for the supervisory control of autonomous systems. We propose applying cognitive task analyses (CTA) and task activity networks to discretize sequential behavior and conditional generative modeling [2, 15] to identify and evaluate critical paths to offer potential improvements to human-autonomy interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from €39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 69.54
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 87.73
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

') var buybox = document.querySelector("[data-id=id_"+ timestamp +"]").parentNode var buyingOptions = buybox.querySelectorAll(".buying-option") ;[].slice.call(buyingOptions).forEach(initCollapsibles) var buyboxMaxSingleColumnWidth = 480 function initCollapsibles(subscription, index) { var toggle = subscription.querySelector(".buying-option-price") subscription.classList.remove("expanded") var form = subscription.querySelector(".buying-option-form") var priceInfo = subscription.querySelector(".price-info") var buyingOption = toggle.parentElement if (toggle && form && priceInfo) { toggle.setAttribute("role", "button") toggle.setAttribute("tabindex", "0") toggle.addEventListener("click", function (event) { var expandedBuyingOptions = buybox.querySelectorAll(".buying-option.expanded") var buyboxWidth = buybox.offsetWidth ;[].slice.call(expandedBuyingOptions).forEach(function(option) { if (buyboxWidth buyboxMaxSingleColumnWidth) { toggle.click() } else { if (index === 0) { toggle.click() } else { toggle.setAttribute("aria-expanded", "false") form.hidden = "hidden" priceInfo.hidden = "hidden" } } }) } initialStateOpen() if (window.buyboxInitialised) return window.buyboxInitialised = true initKeyControls() })()

Institutional subscriptions

Similar content being viewed by others

References

  1. Agrawal, P., Nair, A.V., Abbeel, P., Malik, J., Levine, S.: Learning to poke by poking: experiential learning of intuitive physics. In: Lee, D., Sugiyama, M., Luxburg, U., Guyon, I., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 29. Curran Associates, Inc. (2016)

    Google Scholar 

  2. Ajay, A., Du, Y., Gupta, A., Tenenbaum, J., Jaakkola, T., Agrawal, P.: Is conditional generative modeling all you need for decision-making? arXiv preprint arXiv:2211.15657 (2022)

  3. Arkin, R.C.: Ethics and autonomous systems: perils and promises [point of view]. Proc. IEEE 104(10), 1779–1781 (2016). https://doi.org/10.1109/JPROC.2016.2601162

    Article  Google Scholar 

  4. Brown, S.D., Heathcote, A.: The simplest complete model of choice response time: linear ballistic accumulation. Cogn. Psychol. 57(3), 153–178 (2008). https://doi.org/10.1016/j.cogpsych.2007.12.002

    Article  Google Scholar 

  5. Castrejon, A.M.: Afrl’s xq-67a makes 1st successful flight (2024). https://www.af.mil/News/Article-Display/Article/3694599/afrls-xq-67a-makes-1st-successful-flight/

  6. Chi, C., et al.: Diffusion policy: visuomotor policy learning via action diffusion. Int. J. Robot. Res. (2024). https://doi.org/10.1177/02783649241273668

    Article  Google Scholar 

  7. Clark, R.E., Feldon, D.F., Van Merrienboer, J.J., Yates, K.A., Early, S.: Cognitive task analysis. In: Jonassen, D., Spector, M.J., Driscoll, M., Merrill, M.D., van Merrienboer, J., Driscoll, M.P. (eds.) Handbook of Research on Educational Communications and Technology, 3 edn., pp. 577–593. Routledge (2008)

    Google Scholar 

  8. Endsley, M.: Toward a theory of situation awarenss in dynamic systems. Hum. Factors 37, 32–64 (1995). https://doi.org/10.1518/001872095779049543

    Article  Google Scholar 

  9. Engström, J., Markkula, G., Victor, T., Merat, N.: Effects of cognitive load on driving performance: the cognitive control hypothesis. Hum. Factors 59(5), 734–764 (2017). https://doi.org/10.1177/0018720817690639

    Article  Google Scholar 

  10. Fossaceca, J.M.: Delivering on the promise of autonomous agents in the battlefield. In: Solomon, L., Schwartz, P.J. (eds.) Artificial Intelligence and Machine Learning for Multi-Domain Operations Applications, vol. 12538, p. 1253816. International Society for Optics and Photonics, SPIE (2023). https://doi.org/10.1117/12.2663186

  11. Gray, W.D., Boehm-Davis, D.A.: Milliseconds matter: an introduction to microstrategies and to their use in describing and predicting interactive behavior. J. Exp. Psychol. Appl. 6(4), 322–335 (2000). https://doi.org/10.1037/1076-898X.6.4.322

    Article  Google Scholar 

  12. Gray, W.D., John, B.E., Atwood, M.E.: Project Ernestine: validating a GOMS analysis for predicting and explaining real-world task performance. Hum.-Comput. Interact. 8(3), 237–309 (1993). https://doi.org/10.1207/s15327051hci0803_3

    Article  Google Scholar 

  13. Hancock, P.A.: Some pitfalls in the promises of automated and autonomous vehicles. Ergonomics 62(4), 479–495 (2019). https://doi.org/10.1080/00140139.2018.1498136

    Article  Google Scholar 

  14. Hart, S.G.: NASA-task load index (NASA-TLX); 20 years later. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting. vol. 50, pp. 904–908. Sage publications Sage CA: Los Angeles, CA (2006). https://doi.org/10.1177/15419312060500090

  15. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., Lin, H. (eds.) Advances in Neural Information Processing Systems, vol. 33, pp. 6840–6851. Curran Associates, Inc. (2020)

    Google Scholar 

  16. John, B.E.: Extensions of GOMS analyses to expert performance requiring perception of dynamic visual and auditory information. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 107–116 (1990)

    Google Scholar 

  17. Kirwan, B., Ainsworth, L.K.: A Guide to Task Analysis. CRC Press (1992). https://doi.org/10.1201/b16826

  18. Kortum, P., Byrne, M.D.: The importance of psychological science in a voter’s ability to cast a vote. Curr. Directions Psychol. Sci. 25 (2016). https://doi.org/10.1177/0963721416665104

  19. Laird, J.E., Lebiere, C., Rosenbloom, P.S.: A standard model of the mind: toward a common computational framework across artificial intelligence, cognitive science, neuroscience, and robotics. AI Mag. 38(4), 13–26 (2017). https://doi.org/10.1609/aimag.v38i4.2744

    Article  Google Scholar 

  20. Levine, S., Kumar, A., Tucker, G., Fu, J.: Offline reinforcement learning: tutorial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643 (2020)

  21. Mumaw, R.J.: Not automation failures, but automation interface failures. J. Cogn. Eng. Decis. Making 15553434241228796 (2024). https://doi.org/10.1177/15553434241228796

  22. Newell, A.: Human Problem Solving. Prentice Hall, Upper Saddle River (1972)

    Google Scholar 

  23. O’Neill, T., McNeese, N., Barron, A., Schelble, B.: Human-autonomy teaming: a review and analysis of the empirical literature. Hum. Factors 64(5), 904–938 (2022). https://doi.org/10.1177/001872082096086

    Article  Google Scholar 

  24. Parasuraman, R., Sheridan, T.B., Wickens, C.D.: A model for types and levels of human interaction with automation. IEEE Trans. Syst. Man Cybern. - Part A: Syst. Hum. 30(3), 286–297 (2000). https://doi.org/10.1109/3468.844354

    Article  Google Scholar 

  25. Park, J., Wozniak, D., Zahabi, M.: Modeling novice law enforcement officers’ interaction with in-vehicle technology. Appl. Ergon. 114, 104154 (2024). https://doi.org/10.1016/j.apergo.2023.104154

    Article  Google Scholar 

  26. Patton, E.W., Gray, W.D.: SANLab-CM: a tool for incorporating stochastic operations into activity network modeling. Behav. Res. Methods 42(3), 877–883 (2010). https://doi.org/10.3758/BRM.42.3.877

    Article  Google Scholar 

  27. Pearce, T., et al.: Imitating human behaviour with diffusion models. arXiv preprint arXiv:2301.10677 (2023)

  28. Pütz, S., Mertens, A., Chuang, L.L., Nitsch, V.: Physiological predictors of operator performance: the role of mental effort and its link to task performance. Hum. Factors 00187208241296830 (2024). https://doi.org/10.1177/00187208241296830

  29. Ratcliff, R.: A theory of memory retrieval. Psychol. Rev. 85(2), 59–108 (1978). https://doi.org/10.1037/0033-295X.85.2.59

    Article  Google Scholar 

  30. Ratcliff, R., Smith, P.L., Brown, S.D., McKoon, G.: Diffusion decision model: current issues and history. Trends Cogn. Sci. 20(4), 260–281 (2016). https://doi.org/10.1016/j.tics.2016.01.007

    Article  Google Scholar 

  31. Rouse, W.B.: Human-computer interaction in multitask situations. IEEE Trans. Syst. Man Cybern. 7 (1977). https://doi.org/10.1109/TSMC.1977.4309727

  32. Sheridan, T.B.: Human Supervisory Control, chap. 34, pp. 990–1015. Wiley (2012). https://doi.org/10.1002/9781118131350.ch34

  33. Sheridan, T.B.: Human Supervisory Control of Automation, chap. 28, pp. 736–760. Wiley (2021). https://doi.org/10.1002/9781119636113.ch28

  34. Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., Ganguli, S.: Deep unsupervised learning using nonequilibrium thermodynamics. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 2256–2265. PMLR, Lille, France (2015)

    Google Scholar 

  35. Stevens, C.A., Morris, M.B., Fisher, C.R., Myers, C.W.: Profiling cognitive workload in an unmanned vehicle control task with cognitive models and physiological metrics. Mil. Psychol. 35(6), 507–520 (2023). https://doi.org/10.1080/08995605.2022.2130673

    Article  Google Scholar 

  36. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. A Bradford Book, Cambridge (2018)

    Google Scholar 

  37. Taatgen, N.A.: A model of individual differences in skill acquisition in the Kanfer-Ackerman air traffic control task. Cogn. Syst. Res. 3(1), 103–112 (2002). https://doi.org/10.1016/S1389-0417(01)00049-3

    Article  Google Scholar 

  38. Watkins, C.J., Dayan, P.: Q-learning. Mach. Learn. 8, 279–292 (1992). https://doi.org/10.1007/BF00992698

    Article  Google Scholar 

Download references

Acknowledgments

The opinions expressed herein are solely those of the authors and do not represent the official positions of the United States Government, the U.S. Department of Defense, the U.S. Air Force, or any of their subsidiaries or employees, or the United States Air Force. Distribution A. Approved for public release. Case number AFRL-2025-0295.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Myers .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as potential conflicts of interest. The reported study was approved by the Institutional Review Board at the Air Force Research Laboratory under protocol number FWR20240083H.

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Myers, C., Ugolini, M., Curley, T. (2025). Optimizing Human-Autonomy Interaction: A Proposed Methodology. In: Schmorrow, D.D., Fidopiastis, C.M. (eds) Augmented Cognition. HCII 2025. Lecture Notes in Computer Science(), vol 15778. Springer, Cham. https://doi.org/10.1007/978-3-031-93724-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-93724-8_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-93723-1

  • Online ISBN: 978-3-031-93724-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics