Skip to main content

Neural Dynamics of Group Interaction in the Iterate Multi-player Prisoner’s Dilemma Game: Multilayer Network Approach

  • Conference paper
  • First Online:
Augmented Cognition (HCII 2025)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 15778))

Included in the following conference series:

  • 280 Accesses

Abstract

Understanding social interaction from various human behaviors is a complex task. Hyperscanning research tackles this challenge by delving into behavioral mechanisms through a neuroscience lens. While traditional studies focus on inter-brain synchrony in paired functional brain networks, they often lack methods for measuring interactions at the group level. In this study, we propose a multilayer network approach to estimate group brain synchrony and gain deeper insights into the brain’s intricate organization. By utilizing the Prisoner’s Dilemma Game, our goal is to find group interaction processes through distinct behaviors such as cooperation and defection. Thus, the inter-brain synchrony along with differences in network connectivity and structural properties within the functional group network were statistically analyzed between cooperation and defection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
€34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 69.54
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 87.73
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

') var buybox = document.querySelector("[data-id=id_"+ timestamp +"]").parentNode var buyingOptions = buybox.querySelectorAll(".buying-option") ;[].slice.call(buyingOptions).forEach(initCollapsibles) var buyboxMaxSingleColumnWidth = 480 function initCollapsibles(subscription, index) { var toggle = subscription.querySelector(".buying-option-price") subscription.classList.remove("expanded") var form = subscription.querySelector(".buying-option-form") var priceInfo = subscription.querySelector(".price-info") var buyingOption = toggle.parentElement if (toggle && form && priceInfo) { toggle.setAttribute("role", "button") toggle.setAttribute("tabindex", "0") toggle.addEventListener("click", function (event) { var expandedBuyingOptions = buybox.querySelectorAll(".buying-option.expanded") var buyboxWidth = buybox.offsetWidth ;[].slice.call(expandedBuyingOptions).forEach(function(option) { if (buyboxWidth buyboxMaxSingleColumnWidth) { toggle.click() } else { if (index === 0) { toggle.click() } else { toggle.setAttribute("aria-expanded", "false") form.hidden = "hidden" priceInfo.hidden = "hidden" } } }) } initialStateOpen() if (window.buyboxInitialised) return window.buyboxInitialised = true initKeyControls() })()

Institutional subscriptions

Similar content being viewed by others

References

  1. Brandão, T., Matias, M., Ferreira, T., Vieira, J., Schulz, M.S., Matos, P.M.: Attachment, emotion regulation, and well-being in couples: intrapersonal and interpersonal associations. J. Pers. 88(4), 748–761 (2020). https://doi.org/10.1111/jopy.12523

    Article  Google Scholar 

  2. Karreman, A., Vingerhoets, A.J.J.M.: Attachment and well-being: the mediating role of emotion regulation and resilience. Personal. Individ. Differ. 53(7), 821–826 (2012). https://doi.org/10.1016/j.paid.2012.06.014

    Article  Google Scholar 

  3. Caruana, N., McArthur, G., Woolgar, A., Brock, J.: Simulating social interactions for the experimental investigation of joint attention. Neurosci. Biobehav. Rev. 74, 115–125 (2017). https://doi.org/10.1016/j.neubiorev.2016.12.022

    Article  Google Scholar 

  4. Innocenti, A., De Stefani, E., Bernardi, N.F., Campione, G.C., Gentilucci, M.: Gaze direction and request gesture in social interactions. PLoS ONE 7(5), e36390 (2012). https://doi.org/10.1371/journal.pone.0036390

    Article  Google Scholar 

  5. Treger, S., Sprecher, S., Erber, R.: Laughing and liking: Exploring the interpersonal effects of humor use in initial social interactions. Eur. J. Soc. Psychol. 43(6), 532–543 (2013). https://doi.org/10.1002/ejsp.1962

    Article  Google Scholar 

  6. Brehm, J.M.: Community attachment: the complexity and consequence of the natural environment facet. Hum. Ecol. 35(4), 477–488 (2007). https://doi.org/10.1007/s10745-006-9104-3

    Article  Google Scholar 

  7. Cacioppo, J.T., Berntson, G.G.: Social Neuroscience: Key Readings. Psychology Press (2005)

    Google Scholar 

  8. Pönkänen, L.M., Peltola, M.J., Hietanen, J.K.: The observer observed: frontal EEG asymmetry and autonomic responses differentiate between another person’s direct and averted gaze when the face is seen live. Int. J. Psychophysiol. 82(2), 180–187 (2011). https://doi.org/10.1016/j.ijpsycho.2011.08.006

    Article  Google Scholar 

  9. Pönkänen, L.M., Hietanen, J.K.: Eye contact with neutral and smiling faces: effects on autonomic responses and frontal EEG asymmetry. Front. Hum. Neurosci. 6 (2012). https://doi.org/10.3389/fnhum.2012.00122

  10. Hasson, U., Ghazanfar, A.A., Galantucci, B., Garrod, S., Keysers, C.: Brain-to-brain coupling: a mechanism for creating and sharing a social world. Trends Cogn. Sci. 16(2), 114–121 (2012). https://doi.org/10.1016/j.tics.2011.12.007

    Article  Google Scholar 

  11. Kelsen, B.A., Sumich, A., Kasabov, N., Liang, S.H.Y., Wang, G.Y.: What has social neuroscience learned from hyperscanning studies of spoken communication? A systematic review. Neurosci. Biobehav. Rev. 132, 1249–1262 (2022). https://doi.org/10.1016/j.neubiorev.2020.09.008

    Article  Google Scholar 

  12. Baccalá, L.A., Sameshima, K.: Partial directed coherence: a new concept in neural structure determination. Biol. Cybern. 84(6), 463–474 (2001). https://doi.org/10.1007/PL00007990

    Article  Google Scholar 

  13. Lachaux, J.-P., Rodriguez, E., Martinerie, J., Varela, F.J.: Measuring phase synchrony in brain signals. Hum. Brain Mapp. 8(4), 194–208 (1999). https://doi.org/10.1002/(SICI)1097-0193(1999)8:4%3c194::AID-HBM4%3e3.0.CO;2-C

    Article  Google Scholar 

  14. Ménoret, M., et al.: Neural correlates of non-verbal social interactions: a dual-EEG study. Neuropsychologia 55, 85–97 (2014). https://doi.org/10.1016/j.neuropsychologia.2013.10.001

    Article  Google Scholar 

  15. Czeszumski, A., et al.: Hyperscanning: a valid method to study neural inter-brain underpinnings of social interaction. Front. Hum. Neurosci. 14, 39 (2020)

    Article  Google Scholar 

  16. Shamay-Tsoory, S.G., Mendelsohn, A.: Real-life neuroscience: an ecological approach to brain and behavior research. Perspect. Psychol. Sci. 14(5), 841–859 (2019). https://doi.org/10.1177/1745691619856350

    Article  Google Scholar 

  17. Kasai, K., Fukuda, M., Yahata, N., Morita, K., Fujii, N.: The future of real-world neuroscience: Imaging techniques to assess active brains in social environments. Neurosci. Res. 90, 65–71 (2015). https://doi.org/10.1016/j.neures.2014.11.007

    Article  Google Scholar 

  18. Müller, V., Lindenberger, U.: Intra- and interbrain synchrony and hyperbrain network dynamics of a guitarist quartet and its audience during a concert. Ann. N. Y. Acad. Sci. 1523(1), 74–90 (2023). https://doi.org/10.1111/nyas.14987

    Article  Google Scholar 

  19. Toppi, J., et al.: Investigating cooperative behavior in ecological settings: an EEG hyperscanning study. PLOS ONE, 11(4), e0154236 (2016). https://doi.org/10.1371/journal.pone.0154236

  20. Gugnowska, K., Novembre, G., Kohler, N., Villringer, A., Keller, P.E., Sammler, D.: Endogenous sources of interbrain synchrony in duetting pianists. Cereb. Cortex 32(18), 4110–4127 (2022)

    Article  Google Scholar 

  21. Dumas, G., Nadel, J., Soussignan, R., Martinerie, J., Garnero, L.: Inter-brain synchronization during social interaction. PLoS ONE 5(8), e12166 (2010)

    Article  Google Scholar 

  22. D. B. Stone et al., “Hyperscanning of Interactive Juggling: Expertise Influence on Source Level Functional Connectivity,” Front. Hum. Neurosci., vol. 13, Sep. 2019, https://doi.org/10.3389/fnhum.2019.00321

  23. D. J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-world’networks,” nature, vol. 393, no. 6684, pp. 440–442, 1998

    Google Scholar 

  24. Bullmore, E., Sporns, O.: Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10(3), 186–198 (2009)

    Article  Google Scholar 

  25. Bassett, D.S., Bullmore, E.T.: Small-world brain networks revisited. Neuroscientist 23(5), 499–516 (2017). https://doi.org/10.1177/1073858416667720

    Article  Google Scholar 

  26. Martinet, L.-E., et al.: Robust dynamic community detection with applications to human brain functional networks. Nat. Commun. 11(1), 2785 (2020). https://doi.org/10.1038/s41467-020-16285-7

    Article  Google Scholar 

  27. Horswill, M.S., Helman, S.: A behavioral comparison between motorcyclists and a matched group of non-motorcycling car drivers: factors influencing accident risk. Accid. Anal. Prev. 35(4), 589–597 (2003). https://doi.org/10.1016/S0001-4575(02)00039-8

    Article  Google Scholar 

  28. Cao, Y., Philp, J.: Interactional context and willingness to communicate: a comparison of behavior in whole class, group and dyadic interaction. System 34(4), 480–493 (2006). https://doi.org/10.1016/j.system.2006.05.002

    Article  Google Scholar 

  29. Harada, T.: Three heads are better than two: Comparing learning properties and performances across individuals, dyads, and triads through a computational approach. PLoS ONE 16(6), e0252122 (2021). https://doi.org/10.1371/journal.pone.0252122

    Article  Google Scholar 

  30. Astolfi, L., et al.: Comparison of different cortical connectivity estimators for high-resolution EEG recordings. Hum. Brain Mapp. 28(2), 143–157 (2007). https://doi.org/10.1002/hbm.20263

    Article  Google Scholar 

  31. Wolfe, J.D., Kirkland, S.: Dyad/Triad Studies. I: Encyclopedia of Gerontology and Population Aging, pp. 1536–1540. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-22009-9_579

  32. Zhou, L., Zhang, D.: A comparison of deception behavior in dyad and triadic group decision making in synchronous computer-mediated communication. Small Group Res. 37(2), 140–164 (2006). https://doi.org/10.1177/1046496405285125

    Article  Google Scholar 

  33. Yoon, J., Thye, S.R., Lawler, E.J.: Exchange and cohesion in dyads and triads: a test of Simmel’s hypothesis. Soc. Sci. Res. 42(6), 1457–1466 (2013). https://doi.org/10.1016/j.ssresearch.2013.06.003

    Article  Google Scholar 

  34. O’Riordan, C., Sorensen, H.: Stable cooperation in the N-player prisoner’s dilemma: the importance of community structure. In: Tuyls, K., Nowe, A., Guessoum, Z., Kudenko, D., (eds.) Adaptive Agents and Multi-Agent Systems III. Adaptation and Multi-Agent Learning, pp. 157–168. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-77949-0_12

  35. Newman, L.A., Cao, M., Täuber, S., van Vugt, M.K.: Mapping inter-brain synchronization results onto experimental design and analysis methods: a review on EEG hyperscanning. OSF (2024).https://doi.org/10.31234/osf.io/5vgp9

  36. Dikker, S., et al.: Brain-to-brain synchrony tracks real-world dynamic group interactions in the classroom. Curr. Biol. 27(9), 1375–1380 (2017). https://doi.org/10.1016/j.cub.2017.04.002

    Article  Google Scholar 

  37. Bevilacqua, D., et al.: Brain-to-brain synchrony and learning outcomes vary by student-teacher dynamics: evidence from a real-world classroom electroencephalography study. J. Cogn. Neurosci. 31(3), 401–411 (2019). https://doi.org/10.1162/jocn_a_01274

    Article  Google Scholar 

  38. Silfwerbrand, L., Koike, Y., Nyström, P., Gingnell, M.: Directed causal effect with PCMCI in hyperscanning EEG time series. Front. Neurosci. 18 (2024). https://doi.org/10.3389/fnins.2024.1305918

  39. Bi, X., Cui, H., Ma, Y.: Hyperscanning studies on interbrain synchrony and child development: a narrative review. Neuroscience 530, 38–45 (2023). https://doi.org/10.1016/j.neuroscience.2023.08.035

    Article  Google Scholar 

  40. “Group decision-making behavior in social dilemmas: Inter-brain synchrony and the predictive role of personality traits.,” APA PsycNET. https://psycnet.apa.org/record/2020-80253-001. Accessed 25 Jan 25 2025

  41. Blin, J.-M., Satterthwaite, M.A.: Individual decisions and group decisions: the fundamental differences. J. Public Econ. 10(2), 247–267 (1978). https://doi.org/10.1016/0047-2727(78)90037-3

    Article  Google Scholar 

  42. Cason, T.N., Mui, V.: A laboratory study of group polarisation in the team dictator game. Econ. J. 107(444), 1465–1483 (1997). https://doi.org/10.1111/j.1468-0297.1997.tb00058.x

    Article  Google Scholar 

  43. Cooper, D.J., Kagel, J.H.: Are two heads better than one? Team versus Individual play in signaling games. Am. Econ. Rev. 95(3), 477–509 (2005). https://doi.org/10.1257/0002828054201431

    Article  Google Scholar 

  44. Camerer, C.F.: Behavioral Game Theory: Experiments in Strategic Interaction. Princeton University Press, Princeton (2011)

    Google Scholar 

  45. Astolfi, L., et al.: Neuroelectrical hyperscanning measures simultaneous brain activity in humans. Brain Topogr. 23(3), 243–256 (2010). https://doi.org/10.1007/s10548-010-0147-9

    Article  Google Scholar 

  46. Babiloni, F., et al.: Cortical activity and connectivity of human brain during the prisoner’s dilemma: an EEG hyperscanning study. In: 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 4953–4956 (2007).https://doi.org/10.1109/IEMBS.2007.4353452

  47. Jahng, J., Kralik, J.D., Hwang, D.-U., Jeong, J.: Neural dynamics of two players when using nonverbal cues to gauge intentions to cooperate during the prisoner’s dilemma game. Neuroimage 157, 263–274 (2017)

    Article  Google Scholar 

  48. Astolfi, L., et al.: Estimation of the cortical activity from simultaneous multi-subject recordings during the prisoner’s dilemma. In: 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1937–1939 (2009). https://doi.org/10.1109/IEMBS.2009.5333456

  49. De Vico Fallani, F., et al.: Defecting or not defecting: how to “read” human behavior during cooperative games by EEG measurements. PLoS ONE 5(12), e14187 (2010)

    Article  Google Scholar 

  50. Cervantes Constantino, F., et al.: Neural processing of iterated prisoner’s dilemma outcomes indicates next-round choice and speed to reciprocate cooperation. Soc. Neurosci. 16(2), 103–120 (2021). https://doi.org/10.1080/17470919.2020.1859410

    Article  Google Scholar 

  51. Papageorgiou, C., Karanasiou, I.S., Tsianaka, E.I., Kyprianou, M., Papadimitriou, G.N., Uzunoglu, N.K.: Motive related positivity: decision-making during a prisoners’ dilemma task. J. Integr. Neurosci. 12(02), 183–199 (2013). https://doi.org/10.1142/S0219635213500106

    Article  Google Scholar 

  52. Rezaei, G., Kirley, M.: Dynamic social networks facilitate cooperation in the N<math><mi is=“true”>N</mi></math>-player prisoner’s dilemma. Phys. Stat. Mech. Appl. 391(23), 6199–6211 (2012). https://doi.org/10.1016/j.physa.2012.06.071

    Article  Google Scholar 

  53. Rezaei, G., Kirley, M., Pfau, J.: Evolving cooperation in the N-player prisoner’s dilemma: a social network model. In: Korb, K., Randall, M., Hendtlass, T., (eds.) Artificial Life: Borrowing from Biology, pp. 43–52. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10427-5_5

  54. OpenViBE: An Open-Source Software Platform to Design, Test, and Use Brain–Computer Interfaces in Real and Virtual Environments. https://ieeexplore.ieee.org/abstract/document/6797525. Accessed 25 Jan 2025

  55. Delorme, A., Makeig, S.: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 134(1), 9–21 (2004)

    Article  Google Scholar 

  56. Essam, E.S., Elshobaky, E.M., Soliman, K.M.: Two population three-player prisoner’s dilemma game. Appl. Math. Comput. 277, 44–53 (2016). https://doi.org/10.1016/j.amc.2015.12.047

    Article  MathSciNet  Google Scholar 

  57. Taha, M.A., Ghoneim, A.: Zero-determinant strategies in infinitely repeated three-player prisoner’s dilemma game. Chaos Solitons Fractals 152, 111408 (2021). https://doi.org/10.1016/j.chaos.2021.111408

    Article  MathSciNet  Google Scholar 

  58. Maris, E., Oostenveld, R.: Nonparametric statistical testing of EEG- and MEG-data. J. Neurosci. Methods 164(1), 177–190 (2007). https://doi.org/10.1016/j.jneumeth.2007.03.024

    Article  Google Scholar 

  59. Oostenveld, R., Fries, P., Maris, E., Schoffelen, J.-M.: FieldTrip: open-source software for advanced analysis of MEG, EEG, and invasive electrophysiological data (2011). https://doi.org/10.1155/2011/156869

  60. Guevara, M.A., Corsi-Cabrera, M.: EEG coherence or EEG correlation? Int. J. Psychophysiol. 23(3), 145–153 (1996)

    Article  Google Scholar 

  61. Burgess, A.P.: On the interpretation of synchronization in EEG hyperscanning studies: a cautionary note. Front. Hum. Neurosci. 7, 881 (2013)

    Article  Google Scholar 

  62. Duan, L., Dai, R.-N., Xiao, X., Sun, P.-P., Li, Z., Zhu, C.-Z.: Cluster imaging of multi-brain networks (CIMBN): a general framework for hyperscanning and modeling a group of interacting brains. Front. Neurosci. 9, 267 (2015)

    Article  Google Scholar 

  63. Van Wijk, B.C.M., Stam, C.J., Daffertshofer, A.: Comparing brain networks of different size and connectivity density using graph theory. PLoS ONE 5(10), e13701 (2010). https://doi.org/10.1371/journal.pone.0013701

    Article  Google Scholar 

  64. Rubinov, M., Sporns, O.: Weight-conserving characterization of complex functional brain networks. Neuroimage 56(4), 2068–2079 (2011). https://doi.org/10.1016/j.neuroimage.2011.03.069

    Article  Google Scholar 

  65. Battiston, F., Nicosia, V., Latora, V.: Structural measures for multiplex networks. Phys. Rev. E 89(3), 032804 (2014). https://doi.org/10.1103/PhysRevE.89.032804

    Article  Google Scholar 

  66. Muller, R.U., Stead, M., Pach, J.: The hippocampus as a cognitive graph. J. Gen. Physiol. 107(6), 663–694 (1996). https://doi.org/10.1085/jgp.107.6.663

    Article  Google Scholar 

  67. Stam, C.J.: Functional connectivity patterns of human magnetoencephalographic recordings: a ‘small-world’ network? Neurosci. Lett. 355(1), 25–28 (2004). https://doi.org/10.1016/j.neulet.2003.10.063

    Article  Google Scholar 

  68. Bassett, D.S., Meyer-Lindenberg, A., Achard, S., Duke, T., Bullmore, E.: Adaptive reconfiguration of fractal small-world human brain functional networks. Proc. Natl. Acad. Sci. 103(51), 19518–19523 (2006). https://doi.org/10.1073/pnas.0606005103

    Article  Google Scholar 

  69. Achard, S., Salvador, R., Whitcher, B., Suckling, J., Bullmore, E.: A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J. Neurosci. 26(1), 63–72 (2006). https://doi.org/10.1523/JNEUROSCI.3874-05.2006

    Article  Google Scholar 

  70. Astolfi, L., et al.: Simultaneous estimation of cortical activity during social interactions by using EEG hyperscannings. In: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, pp. 2814–2817 (2010).https://doi.org/10.1109/IEMBS.2010.5626555

  71. Astolfi, L., et al.: Imaging the social brain by simultaneous hyperscanning during subject interaction. IEEE Intell. Syst. 26(5), 38–45 (2011). https://doi.org/10.1109/MIS.2011.61

    Article  Google Scholar 

  72. Kawasaki, M., Kitajo, K., Yamaguchi, Y.: Dynamic links between theta executive functions and alpha storage buffers in auditory and visual working memory. https://onlinelibrary.wiley.com/doi/10.1111/j.1460-9568.2010.07217.x. Accessed 25 Jan 2025

  73. Perry, A., et al.: Intranasal oxytocin modulates EEG mu/alpha and beta rhythms during perception of biological motion. Psychoneuroendocrinology 35(10), 1446–1453 (2010)

    Article  Google Scholar 

  74. Kawasaki, M., Kitajo, K., Yamaguchi, Y.: Dynamic links between theta executive functions and alpha storage buffers in auditory and visual working memory. Eur. J. Neurosci. 31(9), 1683–1689 (2010)

    Article  Google Scholar 

  75. Dumas, G., Nadel, J., Soussignan, R., Martinerie, J., Garnero, L.: Inter-brain synchronization during social interaction. PloS one 5(8), e12166 (2010)

    Article  Google Scholar 

  76. Astolfi, L., et al.: Imaging the social brain by simultaneous hyperscanning during subject interaction. IEEE Intell. Syst. 26(5), 38 (2011)

    Article  Google Scholar 

  77. Babiloni, C., et al.: Brains “in concert”: frontal oscillatory alpha rhythms and empathy in professional musicians. Neuroimage 60(1), 105–116 (2012)

    Article  Google Scholar 

  78. Kawasaki, M., Yamada, Y., Ushiku, Y., Miyauchi, E., Yamaguchi, Y.: Inter-brain synchronization during coordination of speech rhythm in human-to-human social interaction. Sci. Rep. 3(1), 1692 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This research was results of a study on the “HPC Support” Project, supported by the ‘Ministry of Science and ICT’ and NIPA. This work was in part supported by the Ministry of Education of the Republic of Korea and the National Research Foundation of Korea (NRF-2023S1A5A2A01076552).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung Chan Jun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kim, H., Jun, S.C., Nam, C.S. (2025). Neural Dynamics of Group Interaction in the Iterate Multi-player Prisoner’s Dilemma Game: Multilayer Network Approach. In: Schmorrow, D.D., Fidopiastis, C.M. (eds) Augmented Cognition. HCII 2025. Lecture Notes in Computer Science(), vol 15778. Springer, Cham. https://doi.org/10.1007/978-3-031-93724-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-93724-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-93723-1

  • Online ISBN: 978-3-031-93724-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics