Atkins, A. G. (2003). Modelling metal cutting using modern ductile fracture mechanics: quantitative explanations for some longstanding problems. International Journal of Mechanical Science, 43, 373–396.
Article
Google Scholar
Astakhov, V. P. (2004). The assessment of cutting tool wear. International Journal of Machine Tools and Manufacture, 44, 637–647.
Article
Google Scholar
Astakhov, V. P. (2006). An opening historical note. International Journal of Machining and Machinability of Materials, 1, 3–11.
Google Scholar
Bayer, A. M., Becherer, B. A., & Vasco, T. (1989). High speed tool steels, ASM Handbook (Vol. 16: Machining, pp. 51–59). ASM Handbook Committee.
Google Scholar
Benjamin, T., Count of Rumford. (1798). An Inquiry Concerning the Source of the Heat Which is Excited by Friction, Phil Trans Royal Soc (Lon), 18, 278–287. Also in collected works of Count Rumford, Essays-Political, Economical, and Philosophical, 1st Edition, David West, Boston, Vol. 2, 469–496 (1799).
Google Scholar
Boothroyd, G. (1961). Photographic technique for the determination of metal cutting temperature. British Journal of Applied Physics, 12, 238–242.
Article
Google Scholar
Briks, A. A. (1896). Metal cutting. Kyibashev: Publishing House.
Google Scholar
Brooks, J. F. (1905). Photographs of Cutting Tools in Action. In Proceedings of Institution of Mechanical Engineering, (London) Parts 1 and 2, p. 365.
Google Scholar
Chryssolouris, G. (1991). Laser machining: Theory and preactice. New York: Springer.
Book
Google Scholar
Clough, R.W. (1960). The finite element in plane stress analysis. In: Proceedings of 2nd A. S. C. E. Conference on Electronic Computation, Pittsburgh, PA.
Google Scholar
Corry, A. K. (1990). Engineering, methods of manufacture and production. In I. McNeil (Ed.), An encyclopedia of the history of technology (pp. 388–427). London: Routledge.
Google Scholar
Courant, R. (1943). Variational methods for the solution of problems of equilibrium and vibrations. Bulletin of the American Mathematical Society, 49, 1–23.
Article
MathSciNet
MATH
Google Scholar
Darling, A. S. (1990). Non-ferrous metals. In I. McNeil (Ed.), An Encyclopedia of the History of Technology (pp. 1–40). London: Routledge.
Google Scholar
Dawihl, W. (1940). Investigation of the processes in the wear of cemented carbide tools, (in German) Zeitschrift Technische Physik, 21
(12), 337–345.
Google Scholar
Deb, S. R. (1994). Robotics technology and flexible automation. New Delhi: Tata McGraw-Hill Publishing Company.
Google Scholar
Drucker, D. (1949). An analysis of the mechanics of metal cutting. Journal of Applied Physics, 20, 1013–1021.
Article
Google Scholar
Dubey, A. K., & Yadava, V. (2008). Laser beam machining—a review. International Journal of Machine Tools and Manufacture, 48, 609–628.
Article
Google Scholar
Dutta, N. C. (2010). Rapid prototyping—an introduction. In Proceedings of 25th National Convention of Production Engineers & National Seminar on Recent Development of Manufacturing Technology, May 8–9, 2010, Agartala, India.
Google Scholar
Ernst, H., & Merchant, M. E. (1941). Chip formation, friction and finish. Cincinnati: Cincinnati milling machine Company.
Google Scholar
Engel, U., & Eckstein, R. (2002). Microforming from basic research to its realization. Journal of Material Processing Technology, 125–126, 35–44.
Article
Google Scholar
ESC Report. (1991). History of adhesives, BSA Educational Services Committee, 1–4.
Google Scholar
Geiger, M., Kleiner, M., Eckstein, R., Tiesler, N., & Engel, U. (2001). Microforming. CIRP Annals—Manufacturing Technology, 50, 445–462.
Google Scholar
Green, A. P. (1951). The compression of a ductile material between smooth dies. Philosophical Magazine, 42, 900–918.
Article
Google Scholar
Green-Spikesley, E. (1979). Investment casting. Materials in Engineering Applications, 1, 328–334.
Article
Google Scholar
Hill, R. (1948). A theory of the yielding and plastic flow of anisotropic metals. Proceedings of the Royal Society of London, A 193, 281–297.
Google Scholar
Hill, R. (1950). The mathematical theory of plasticity. Oxford: Oxford University Press.
MATH
Google Scholar
Hill, R. (1979). Theoretical plasticity of textured aggregates. Mathematical Proceedings of the Cambridge Philosophical Society, 85, 179–191.
Article
MathSciNet
MATH
Google Scholar
Hill, R. (1993). A user-friendly theory of orthotropic plasticity in sheet metals. International Journal of Mechanical Sciences, 15, 19–25.
Article
MATH
Google Scholar
Hirota, K. (2007). Fabrication of micro-billet by sheet extrusion. Journal of Materials Processing Technology, 191, 283–287.
Article
Google Scholar
Houldcroft, P. T. (1986). Welding process developments and future trends. Materials and Design, 7, 162–169.
Article
Google Scholar
Huang, Y., Leu, M.C., Mazumder, J., & Donmez, A. (2015). Additive manufacturing: Current status, future potential, gaps and needs, and recommendations. ASME Journal of Manufacturing Science and Engineering, 137, 014001 (10 pages).
Google Scholar
Iwato, K., & Ueda, K. (1976). The significance of the dynamic crack behavior in chip formation. Annals of the CIRP, 25, 65–70.
Google Scholar
Jadoun, R. S. (2014). Ultrasonic micromachining (USMM). In V. K. Jain (Ed.), Introduction to Micromachining (2nd ed.). New Delhi: Narosa Publishing House.
Google Scholar
Jaeger, J. C. (1942). Moving sources of heat and the temperature at sliding contacts. Proceedings of Royal Society of New South Wales, 76, 203–224.
MathSciNet
Google Scholar
Jain, V. K., Sidpara, A., Balasubramaniam, R., Lodha, G. S., Dhamgaye, V. P., & Shukla, R. (2014a). Micromanufacturing: A review—Part 1. Proceedings of Institution of Mechanical Engineering, Part B., Journal of Engineering Manufacture, 228, 973–994.
Google Scholar
Jain, V. K., Dixit, U. S., Paul, C. P., & Kumar, A. (2014b). Micromanufacturing: A review—Part 2. Proceedings of Institution of Mechanical Engineering, Part B., Journal of Engineering Manufacture, 228, 995–1014.
Google Scholar
Joule, J. P. (1850). On the mechanical equivalent of heat. Philosophical Transactions of the Royal Society of London, 61–81 (1850).
Google Scholar
Kick, F. (1901). Zur folge der wirkungsweise des taylor− white and der bohler− rapid− stahles. Baumaterialkunde, 6, 227.
Google Scholar
Kitamura, K. (1983). Materials processing by high powered laser, Japan Welding Engineering Society, Technical report JWESTP-8302., pp. 359–371.
Google Scholar
Kronenberg, M. (1954). Discussion to paper Loewen, EG and Shaw, MC, On the analysis of cutting tool temperatures. Transactions of ASME, 71, 217–231.
Google Scholar
Komanduri, R. (1993). Machining and grinding: A historical review of the classical papers. Applied Mechanics Review, 46, 80–132.
Article
Google Scholar
Komanduri, R. (2006). In memoriam: M. Eugene Merchant. ASME Journal of Manufacturing Science & Engineering, 128, 1034–1036.
Article
Google Scholar
Koester, C. J., & Snitzer, E. (1964). Amplification in a fiber laser. Applied Optics, 3(10), 1182–1186.
Article
Google Scholar
Lee, E. H., & Shaffer, B. W. (1951). The theory of plasticity applied to problems of machining. ASME Journal of Applied Mechanics, 18, 405–413.
Google Scholar
Maiuri, T. J. (2009). Hob tool life technology update. Gear Technology, March/April 2009.
Google Scholar
Mallock, A. (1881). The Action of Cutting Tools. Proceedings of the Royal Society of London, 33, 127–139.
Article
Google Scholar
Martin, R. (1979). Automated adjusting in precision engineering (German patent: Automatisiertesjustieren in der feinwerktechnik). DeutschesPatentamt, Offenlegungsschrift, 29(18), 100.
Google Scholar
McNeil, I. (1990). Introduction: Basic tools, devices and mechanisms. In I. McNeil (Ed.), An Encyclopedia of the History of Technology (pp. 1–40). London: Routledge.
Chapter
Google Scholar
Mehta, N. K. (1996). Machine tool design and numerical control (2nd ed.). New Delhi: Tata McGraw-Hill Publishing Company.
Google Scholar
Merchant, M. E. (1944). Basic mechanics of the metal cutting process. Transactions of ASME, 66, A65–A71.
Google Scholar
Merchant, M. E. (1945a). Mechanics of the metal cutting process I: Orthogonal cutting and the type 2 chip. Journal of Applied Physics, 16, 267–275.
Article
Google Scholar
Merchant, M. E. (1945b). Mechanics of the metal cutting process II: Plasticity conditions in orthogonal cutting. Journal of Applied Physics, 16, 318–324.
Article
Google Scholar
Newbury, B. D., & Notis, M. R. (2004). The history and evolution of wiredrawing techniques. JOM Journal of the Minerals Metals and Materials Society, 56, 33–37.
Article
Google Scholar
Orowan, E. (1943). The calculation of roll pressure in hot and cold flat rolling. Proceedings of the Institution of Mechanical Engineers, 150, 140–167.
Article
Google Scholar
Palmer, W. B., & Oxley, P. L. B. (1959). Mechanics of metal cutting. Proceedings of the Institution of Mechanical Engineers, 173, 623–654.
Article
Google Scholar
Piispanen, V. (1937). Lastunmuodostumisen teoriaa. Teknillinen Aikakauslehti, 27, 315–322.
Google Scholar
Prager, W., & Hodge, P. G. (1951). Theory of perfectly plastic solids. New York: Wiley.
Google Scholar
Quiza, R., López-Armas, O., & Davim, J. P. (2012). Hybrid modeling and optimization of manufacturing: Combining artificial intelligence and finite element method. London: Springer.
Book
Google Scholar
Rangwala, S. S., & Dornfeld, D. (1989). Learning and optimization of machining operations using computing abilities of neural networks. IEEE Transactions on Systems, Man and Cybernetics, 19, 299–314.
Article
Google Scholar
Rapier, A. C. (1954). A theoretical investigation of the temperature distribution in the metal cutting process. British Journal of Applied Physics, 5, 400–405.
Article
Google Scholar
Reuleaux, F. (1900). About the Taylor rule white tool steel. Society for the promotion of trade diligence in Prussia. Sitzungsberichete, 79(1), 179–220.
Google Scholar
Risbood, K. A., Dixit, U. S., & Sahasrabudhe, A. D. (2003). Prediction of surface roughness and dimensional deviation by measuring cutting forces and vibrations in turning process. Journal of Materials Processing Technology, 132(1), 203–214.
Article
Google Scholar
Robert, V. B. (1989). Lincoln and the tools of war. Chicago: University of Illinois Press.
Google Scholar
Roberts, W. L. (1978). Cold rolling of steel. New York: Marcel Dekker.
Google Scholar
Roe, J. W. (1916). English and American tool builders. New Haven, Connecticut: Yale University Press, LCCN 16011753. Reprinted by McGraw-Hill, New York and London, 1926 (LCCN 27-24075); and by Lindsay Publications, Inc., Bradley, Illinois, (ISBN 978-0-917914-73-7).
Google Scholar
Rolt, L. T. C. (1965). Tools for the job: A short history of machine tools. London: B.T. Batsford Ltd.
Google Scholar
Sachs, G. (1927). Zur Theorie des Ziehvorganges. Zeitschrift für angewandte Mathematik und Mechanik, 7, 235–236.
Article
MATH
Google Scholar
Saha, S. K. (2008). Introduction to robotics. New Delhi: Tata McGraw Hill Education.
Google Scholar
Shaw, M. C., Cook, N. H., & Smith, P. A. (1952). The mechanics of three-dimensional cutting operations. Transactions of ASME, 74, 1055–1064.
Google Scholar
Shaw, M. C. (1954). Metal cutting principles (3rd ed.). Cambridge, MA: MIT Press.
Google Scholar
Shaw, M. C. (1984). Metal cutting principles. Oxford: Oxford Science Publications.
Google Scholar
Shaw, M. C., & Finnie, I. (1955). The shear stress in metal cutting. Transactions of ASME, 77, 115–125.
Google Scholar
Sheppard, T. (2013). Extrusion of alumnium alloys. London: Springer.
Google Scholar
Sidjanin, L., & Kovac, P. (1997). Fracture mechanisms in chip formation processes. Materials Science and Technology, 13, 439–444.
Google Scholar
Siebel, E. (1923). Untersuchungen uber bildsame Formanderung unter besonderer Berucksichtigung des Schmiedens. Maschinenbau/Betrieb., 9, 307–312. (in German).
Google Scholar
Stabler, G. V. (1951). The fundamental geometry of cutting tools. Proceedings of Mechanical Engineering, 165, 14–21.
Article
Google Scholar
Snitzer, E. (1961). Optial MASER action of Nd+3 in a barium crown glass. Physical Review Letters, 7(12), 444–446.
Article
Google Scholar
Taylor, F. W. (1907). On the art of cutting metals. Transactions of ASME, 28, 31–248.
Google Scholar
Time, I. (1870). Resistance of metals and wood to cutting (in Russian). St. Petersburg, Russia: Dermacow Press House.
Google Scholar
Thomsen, E. G., Yang, C. T., & Bierbower, T. B. (1959). **An experimental investigation of the mechanics of plastic deformation of metals, University of California (Berkeley). Publ. Eng., 5, 89–144.
Google Scholar
Transistor Museum (2009). History of transistors (Vol. 1). A Publication of the Transistor Museum.
Google Scholar
Trent, E. M. (1952). Some factors affecting wear on cemented carbide tools. Proceedings of the Institution of Mechanical Engineers, 166, 64–74.
Article
Google Scholar
Trent, E., & Wright, P. (2000). Metal cutting (4th ed.). New Delhi: Butterworth Heinemann.
Google Scholar
Tresca, H. (1873). Memoir on the planning of metals, (in French). Bulletin de la Société d’Encouragement pour l’Industrie Nationale, 15, 585–685.
Google Scholar
Trigger, K. J., & Chao, B. T. (1956). The mechanism of crater wear of cemented carbide tools. Transactions on ASME, 78, 1119–1126.
Google Scholar
Turner, M. J., Clough, R. W., Martin, H. C., & Topp, L. J. (1956). Stiffness and deflection analysis of complex structures. Journal of Aerosol Science, 23, 805–823.
Article
MATH
Google Scholar
Vollertsen, F., & Sakkiettibutra, J. (2010). Different types of laser used as a forming tool, LANE 2010. Physics Procedia, 5, 193–203.
Article
Google Scholar
von Karman, Th. (1925). Beitrag zur Theorie des Walzvorges. Zeitschrift für angewandte Mathematik und Mechanik, 5, 139–141.
MATH
Google Scholar
Wohlers Associates Inc. (2014). Wohlers report 2014. History of additive manufacturing. Fort Collins: Wholers Associates.
Google Scholar
Zorev, N. N. (Ed.). (1966). Metal cutting mechanics. Oxford: Pergamon Press.
Google Scholar
Zvorykin, K. A. (1896). On the force and energy needed to separate the chip from the workpiece (in Russian). Tekhicheskii Sbornik i Vestnic Promyslinosty, 123, 57–96.
Google Scholar
Retrieved November 19, 2015, from https://www.asme.org/engineering-topics/articles/manufacturing-processing/david-wilkinson.
Retrieved November 19, 2015, from http://www.britannica.com/biography/Frederick-Webster-Howe.
Retrieved November 29, 2015, from http://www.cmsna.com/blog/2013/01/history-of-cnc-machining-how-the-cnc-concept-was-born/.
Retrieved December 20, 2015, from http://www.coord3-cmm.com/50-years-of-coordinate-measuring-machine-industry-developments-and-history/.
Retrieved December 30, 2015, from http://literacy.kent.edu/eureka/EDR/5/Middletown/Industrial%20Fields/History%20of%20Welding.pdf.
Retrieved November 29, 2015, from http://www.ronsongears.com.au/a-brief-history-of-gears.php.
Retrieved November 9, 2015, from http://www.turningtools.co.uk/history2/history-turning2.html.