Skip to main content

Part of the book series: Ergebnisse der Mathematik und ihrer Grenzgebiete ((MATHE3,volume 44))

  • 1294 Accesses

Abstract

In this chapter we state the values of the L 2-Betti numbers, the NovikovShubin invariants and the L 2-torsion for universal coverings of closed locally symmetric spaces. We give a brief survey about locally symmetric and symmetric spaces in Section 5.1 and state the values in Section 5.2 and 5.3. These computations will give evidence for various general conjectures about L 2-invariants such as Conjecture 2.82 about the positivity and rationality of Novikov-Shubin invariants, the Strong Atiyah Conjecture 10.2, the Singer Conjecture 11.1, Conjecture 11.3 about the parity of the L 2-torsion of the universal covering of an aspherical closed manifold and the zero-in-the-spectrum Conjecture 12.1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lück, W. (2002). L 2-Invariants of Symmetric Spaces. In: L 2-Invariants: Theory and Applications to Geometry and K-Theory. Ergebnisse der Mathematik und ihrer Grenzgebiete, vol 44. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04687-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04687-6_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07810-1

  • Online ISBN: 978-3-662-04687-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics