Abstract
In this chapter we state the values of the L 2-Betti numbers, the NovikovShubin invariants and the L 2-torsion for universal coverings of closed locally symmetric spaces. We give a brief survey about locally symmetric and symmetric spaces in Section 5.1 and state the values in Section 5.2 and 5.3. These computations will give evidence for various general conjectures about L 2-invariants such as Conjecture 2.82 about the positivity and rationality of Novikov-Shubin invariants, the Strong Atiyah Conjecture 10.2, the Singer Conjecture 11.1, Conjecture 11.3 about the parity of the L 2-torsion of the universal covering of an aspherical closed manifold and the zero-in-the-spectrum Conjecture 12.1.
Preview
Unable to display preview. Download preview PDF.
Author information
Authors and Affiliations
Rights and permissions
Copyright information
© 2002 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Lück, W. (2002). L 2-Invariants of Symmetric Spaces. In: L 2-Invariants: Theory and Applications to Geometry and K-Theory. Ergebnisse der Mathematik und ihrer Grenzgebiete, vol 44. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04687-6_6
Download citation
DOI: https://doi.org/10.1007/978-3-662-04687-6_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-07810-1
Online ISBN: 978-3-662-04687-6
eBook Packages: Springer Book Archive