Skip to main content

Mono Camera Based Pallet Detection and Pose Estimation for Automated Guided Vehicles

  • Conference paper
  • First Online:
LISS 2020
  • 1004 Accesses

  • 5 Citations

Abstract

Detection and pose estimation of pallets are critical phases in the operation of automated guided vehicles. In this paper, we introduce a novel pipeline for accurate localization based on only a single camera. We utilize the popular YOLO detector, object, and camera models to achieve better performance than the state of the art techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
€34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 213.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
EUR 213.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

') var buybox = document.querySelector("[data-id=id_"+ timestamp +"]").parentNode var buyingOptions = buybox.querySelectorAll(".buying-option") ;[].slice.call(buyingOptions).forEach(initCollapsibles) var buyboxMaxSingleColumnWidth = 480 function initCollapsibles(subscription, index) { var toggle = subscription.querySelector(".buying-option-price") subscription.classList.remove("expanded") var form = subscription.querySelector(".buying-option-form") var priceInfo = subscription.querySelector(".price-info") var buyingOption = toggle.parentElement if (toggle && form && priceInfo) { toggle.setAttribute("role", "button") toggle.setAttribute("tabindex", "0") toggle.addEventListener("click", function (event) { var expandedBuyingOptions = buybox.querySelectorAll(".buying-option.expanded") var buyboxWidth = buybox.offsetWidth ;[].slice.call(expandedBuyingOptions).forEach(function(option) { if (buyboxWidth buyboxMaxSingleColumnWidth) { toggle.click() } else { if (index === 0) { toggle.click() } else { toggle.setAttribute("aria-expanded", "false") form.hidden = "hidden" priceInfo.hidden = "hidden" } } }) } initialStateOpen() if (window.buyboxInitialised) return window.buyboxInitialised = true initKeyControls() })()

Institutional subscriptions

Similar content being viewed by others

References

  1. G. Garibott, S. Masciangelo, M. Ilic, P. Bassino, Robolift: a vision guided autonomous fork-lift for pallet handling, in Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. IROS ’96, vol. 2, pp. 656–663 (1996)

    Google Scholar 

  2. R. Varga, S. Nedevschi, Vision-based autonomous load handling for automated guided vehicles, in 2014 IEEE 10th International Conference on Intelligent Computer Communication and Processing (ICCP), pp. 239–244 (2014)

    Google Scholar 

  3. R. Varga, A. Costea, S. Nedevschi, Improved autonomous load handling with stereo cameras, in 2015 IEEE International Conference on Intelligent Computer Communication and Processing (ICCP), pp. 251– 256 (2015)

    Google Scholar 

  4. D. Haanpaa, G. Beach, C.J. Cohen, Machine vision algorithms for robust pallet engagement and stacking, in 2016 IEEE Applied Imagery Pattern Recognition Workshop (AIPR), pp. 1–8 (2016)

    Google Scholar 

  5. K. Terabayashi, I. Takashima, Y. Suzuki, A. Hinami, T. Sasaki, Easy acquisition of range image dataset for object detection using retroreflective markers and a time-of-flight camera: An application to detection of forklift pallets, in Proceedings of the Seventh Asia International Symposium on Mechatronics (B. Duan, K. Umeda, and W. Hwang, eds.), (Singapore), pp. 1001–1005, Springer Singapore (2020)

    Google Scholar 

  6. J.-Y. Oh, H.-S. Choi, S.-H. Jung, H.-S. Kim, H.-Y. Shin, An experimental study of pallet recognition system using kinect camera, pp. 167–170 (2013)

    Google Scholar 

  7. J. Xiao, H. Lu, L. Zhang, J. Zhang, Pallet recognition and localization using an rgb-d camera. Int. J. Adv. Rob. Syst. 14, 172988141773779 (2017)

    Google Scholar 

  8. N. Bellomo, E. Marcuzzi, L. Baglivo, M. Pertile, E. Bertolazzi, M.D. Cecco, Pallet pose estimation with lidar and vision for autonomous forklifts, in IFAC Proceedings Volumes, 13th IFAC Symposium on Information Control Problems in Manufacturing, vol. 42, no. 4, pp. 612–617 (2009)

    Google Scholar 

  9. L. Baglivo, N. Biasi, F. Biral, N. Bellomo, E. Bertolazzi, D. Lio, M. Cecco, Autonomous pallet localization and picking for industrial forklifts: A robust range and look method. Measur Sci Technol 22, 085502 (2011)

    Google Scholar 

  10. S. Mohamed, A. Capitanelli, F. Mastrogiovanni, S. Rovetta, R. Zaccaria, A 2D laser rangefinder scans dataset of standard eur pallets. Data Brief. 24, 103837 (2019)

    Article  Google Scholar 

  11. S. Mohamed, A. Capitanelli, F. Mastrogiovanni, S. Rovetta, R. Zaccaria, Detection, localisation and tracking of pallets using machine learning techniques and 2D range data. Neural Comput. Appl. (2019)

    Google Scholar 

  12. S. Ren, K. He, R. Girshick, J. Sun, Faster R-CNN: towards realtime object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39, 06 (2015)

    Google Scholar 

  13. J. Pages, X. Armangué, J. Salvi, J. Freixenet, J. Marti, A computer vision system for autonomous forklift vehicles in industrial environments 1

    Google Scholar 

  14. G. Chen, R. Peng, Z. Wang, W. Zhao, Pallet recognition and localization method for vision guided forklift, 1–4 (2012)

    Google Scholar 

  15. R. Tsai, A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf tv cameras and lenses. IEEE J. Rob Autom 3, 323–344 (1987)

    Article  Google Scholar 

  16. S. Byun, M. Kim, Real-time positioning and orienting of pallets based on monocular vision, in 2008 20th IEEE International Conference on Tools with Artificial Intelligence, vol. 2, pp. 505–508 (2008)

    Google Scholar 

  17. Cui, G., Lu, L., He, Z., Yao, L., Yang, C., Huang, B., Hu, Z. A robust autonomous mobile forklift pallet recognition, in 2010 2nd International Asia Conference on Informatics in Control, Automation and Robotics (CAR 2010), vol. 3, pp. 286–290 (2010)

    Google Scholar 

  18. M. Seelinger, J. Yoder, Automatic pallet engagement by a vision guided forklift, in Proceedings of the 2005 IEEE International Conference on Robotics and Automation, pp. 4068–407 (2005)

    Google Scholar 

  19. J.-L. Syu, H.-T. Li, J.-S. Chiang, C.-H. Hsia, P.-H. Wu, C.-F. Hsieh, S.-A. Li, A computer vision assisted system for autonomous forklift vehicles in real factory environment. Multimedia Tools Appl 76, 11 (2016)

    Google Scholar 

  20. R. Varga, S. Nedevschi, Robust pallet detection for automated logistics operations, in VISIGRAPP (2016)

    Google Scholar 

  21. T. Li, B. Huang, C. Li, M. Huang, Application of convolution neural network object detection algorithm in logistics warehouse. J. Eng 2019(23), 9053–9058 (2019)

    Article  Google Scholar 

  22. J. Redmon, A. Farhadi, Yolo9000: better, faster, stronger, in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6517–6525 (2017)

    Google Scholar 

  23. Z. Zhang, A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22, 1330–1334 (2000)

    Article  Google Scholar 

  24. P. Torr, A. Zisserman, Mlesac: A new robust estimator with application to estimating image geometry. Comput. Vis. Image Underst. 78(1), 138–156 (2000)

    Article  Google Scholar 

Download references

Acknowledgements

Project no. 2017-1.3.1-VKE-2017-00036 has been implemented with the support provided from the National Research, Development and Innovation Fund of Hungary, financed under the VKE_17 funding scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabor Bohacs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bohacs, G., Rozsa, Z., Bertalan, B. (2021). Mono Camera Based Pallet Detection and Pose Estimation for Automated Guided Vehicles. In: Liu, S., Bohács, G., Shi, X., Shang, X., Huang, A. (eds) LISS 2020. Springer, Singapore. https://doi.org/10.1007/978-981-33-4359-7_1

Download citation

Publish with us

Policies and ethics