L. Zhang, H. Wang, Q. Li, M.H. Zhao, Q.M. Zhan, Big data and medical research in China. BMJ 360, j5910 (2018). https://doi.org/10.1136/bmj.j5910
M. Pavlou, et al., How to develop a more accurate risk prediction model when there are few events. BMJ 351, h3868 (2015). https://doi.org/10.1136/bmj.h3868
D. Cox, Regression models and life tables. J. Roy. Stat. Soc. 34(2), 187–220 (1972)
Google Scholar
S. Polsterl, P. Gupta, L. Wang, S. Conjeti, A. Katouzian, N. Navab, Heterogeneous ensembles for predicting survival of metastatic, castrate-resistant prostate cancer patients. F1000Res 5, 2676 (2016). https://doi.org/10.12688/f1000research.8231.3
P.A. Wolf, R.B. D’Agostino, A.J. Belanger, W.B. Kannel, Probability of stroke: a risk profile from the framingham study. Stroke 22(3), 312–318 (1991)
Article
Google Scholar
C. Dufouil et al., Revised framingham stroke risk profile to reflect temporal trends. Circulation 135(12), 1145–1159 (2017)
Article
Google Scholar
J.A. Dorresteijn et al., Development and validation of a prediction rule for recurrent vascular events based on a cohort study of patients with arterial disease: the SMART risk score. Heart 99(12), 866–872 (2013)
Article
Google Scholar
J. Hippisley-Cox, C. Coupland, P. Brindle, Derivation and validation of QStroke score for predicting risk of ischaemic stroke in primary care and comparison with other risk scores: a prospective open cohort study. BMJ. 346, f2573 (2013). https://doi.org/10.1136/bmj.f2573
X. Xing, et al., Predicting 10-year and lifetime stroke risk in chinese population. Stroke, p. STROKEAHA119025553 (2019). https://doi.org/10.1161/strokeaha.119.025553
STEYERBERG, E.W, Clinical prediction models. A practical approach to development, validation, and updating. J. Roy. Stat. Soc. 66(2), 661–662 (2010)
Google Scholar
E. Vittinghoff, D.V. Glidden, S.C. Shiboski, C.E. McCulloch, Regression Methods in Biostatistics: Linear, Logistic, Survival, and Repeated Measures Models (Springer Science & Business Media, 2011)
Google Scholar
F.E. Harrell Jr, Regression Modeling Strategies: With Applications to Linear Models, Logistic and Ordinal Regression, and Survival Analysis. (Springer, 2015)
Google Scholar
J.A. Sterne, et al., Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls. BMJ 338, b2393 (2009). https://doi.org/10.1136/bmj.b2393
A.E. Hoerl, R.W. Kennard, Ridge regression: biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970)
Article
Google Scholar
R. Tibshirani, Regression shrinkage and selection via the lasso. J. Roy. Stat. Soc.: Ser. B (Methodol.) 58(1), 267–288 (1996)
Google Scholar
T. Hastie, H. Zou, Regularization and variable selection via the elastic net. J. Roy. Stat. Soc. 67(5), 768–768
Google Scholar
Y. Huo et al., Efficacy of folic acid therapy in primary prevention of stroke among adults with hypertension in China: the CSPPT randomized clinical trial. JAMA 313(13), 1325–1335 (2015). https://doi.org/10.1001/jama.2015.2274
Article
Google Scholar
T.P. Morris, I.R. White, P. Royston, Tuning multiple imputation by predictive mean matching and local residual draws. BMC Med. Res. Methodol. 14(1), 75 (2014)
Article
Google Scholar
F.E. Harrell, R.M. Califf, D.B. Pryor, K.L. Lee, R.A. Rosati, Evaluating the yield of medical tests. JAMA 247(18), 2543–2546 (1982)
Article
Google Scholar
M.J. Pencina, R.B. D’Agostino, Overall C as a measure of discrimination in survival analysis: model specific population value and confidence interval estimation. Stat. Med. 23(13), 2109–2123 (2004). https://doi.org/10.1002/sim.1802
Article
Google Scholar
S. Derksen, H.J. Keselman, Backward, forward and stepwise automated subset selection algorithms: frequency of obtaining authentic and noise variables. Br. J. Math. Stat. Psychol. 45(2), 265–282 (1992)
Article
Google Scholar
W. Sauerbrei, M. Schumacher, A bootstrap resampling procedure for model building: application to the Cox regression model. Stat. Med. 11(16), 2093–2109 (1992)
Article
Google Scholar
D.G. Altman, P.K. Andersen, Bootstrap investigation of the stability of a cox regression model. Stat. Med. 8(7), 771–783 (1989)
Article
Google Scholar
J. Shao, Bootstrap model selection. J. Am. Stat. Assoc. 91(434), 655–665 (1996)
Article
Google Scholar
M. W. Heymans, S. van Buuren, D. L. Knol, W. van Mechelen, H. C. de Vet, Variable selection under multiple imputation using the bootstrap in a prognostic study. BMC Med Res Methodol 7(33) (2007). https://doi.org/10.1186/1471-2288-7-33
P.C. Austin, J.V. Tu, Bootstrap methods for developing predictive models. Am. Stat. 58(2), 131–137 (2004). https://doi.org/10.1198/0003130043277
Article
Google Scholar
P. C. Austin, Bootstrap model selection had similar performance for selecting authentic and noise variables compared to backward variable elimination: a simulation study. J. Clin. Epidemiol, 61(10), 1009–17 e1 (2008). https://doi.org/10.1016/j.jclinepi.2007.11.014
N. Meinshausen, P. Bühlmann, Stability selection. J. Roy. Stat. Soc. 72(4), 417–473 (2010)
Article
Google Scholar