Skip to main content

Modeling Strategies for Risk Prediction in Clinical Medicine with Restricted Data: Application to Cardiovascular Disease

  • Conference paper
  • First Online:
LISS 2020

Abstract

This paper describes modeling strategies for risk prediction in clinical medicine, mainly with respect to survival analysis. Restricted data, which is commonly given in initial clinical research, is assumed for these strategies. Cox’s proportional hazard model is used with modern statistical approaches. In this paper, detailed modeling strategies for clinical risk prediction are proposed and demonstrated by using a case study on the cardiovascular disease. Experiments were conducted by employing Stepwise selection and Elastic Net with bootstrapping. Results give some insights for risk prediction and modeling with limitation of clinical data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from €39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 213.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
EUR 213.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

') var buybox = document.querySelector("[data-id=id_"+ timestamp +"]").parentNode var buyingOptions = buybox.querySelectorAll(".buying-option") ;[].slice.call(buyingOptions).forEach(initCollapsibles) var buyboxMaxSingleColumnWidth = 480 function initCollapsibles(subscription, index) { var toggle = subscription.querySelector(".buying-option-price") subscription.classList.remove("expanded") var form = subscription.querySelector(".buying-option-form") var priceInfo = subscription.querySelector(".price-info") var buyingOption = toggle.parentElement if (toggle && form && priceInfo) { toggle.setAttribute("role", "button") toggle.setAttribute("tabindex", "0") toggle.addEventListener("click", function (event) { var expandedBuyingOptions = buybox.querySelectorAll(".buying-option.expanded") var buyboxWidth = buybox.offsetWidth ;[].slice.call(expandedBuyingOptions).forEach(function(option) { if (buyboxWidth buyboxMaxSingleColumnWidth) { toggle.click() } else { if (index === 0) { toggle.click() } else { toggle.setAttribute("aria-expanded", "false") form.hidden = "hidden" priceInfo.hidden = "hidden" } } }) } initialStateOpen() if (window.buyboxInitialised) return window.buyboxInitialised = true initKeyControls() })()

Institutional subscriptions

Similar content being viewed by others

References

  1. L. Zhang, H. Wang, Q. Li, M.H. Zhao, Q.M. Zhan, Big data and medical research in China. BMJ 360, j5910 (2018). https://doi.org/10.1136/bmj.j5910

  2. M. Pavlou, et al., How to develop a more accurate risk prediction model when there are few events. BMJ 351, h3868 (2015). https://doi.org/10.1136/bmj.h3868

  3. D. Cox, Regression models and life tables. J. Roy. Stat. Soc. 34(2), 187–220 (1972)

    Google Scholar 

  4. S. Polsterl, P. Gupta, L. Wang, S. Conjeti, A. Katouzian, N. Navab, Heterogeneous ensembles for predicting survival of metastatic, castrate-resistant prostate cancer patients. F1000Res 5, 2676 (2016). https://doi.org/10.12688/f1000research.8231.3

  5. P.A. Wolf, R.B. D’Agostino, A.J. Belanger, W.B. Kannel, Probability of stroke: a risk profile from the framingham study. Stroke 22(3), 312–318 (1991)

    Article  Google Scholar 

  6. C. Dufouil et al., Revised framingham stroke risk profile to reflect temporal trends. Circulation 135(12), 1145–1159 (2017)

    Article  Google Scholar 

  7. J.A. Dorresteijn et al., Development and validation of a prediction rule for recurrent vascular events based on a cohort study of patients with arterial disease: the SMART risk score. Heart 99(12), 866–872 (2013)

    Article  Google Scholar 

  8. J. Hippisley-Cox, C. Coupland, P. Brindle, Derivation and validation of QStroke score for predicting risk of ischaemic stroke in primary care and comparison with other risk scores: a prospective open cohort study. BMJ. 346, f2573 (2013). https://doi.org/10.1136/bmj.f2573

  9. X. Xing, et al., Predicting 10-year and lifetime stroke risk in chinese population. Stroke, p. STROKEAHA119025553 (2019). https://doi.org/10.1161/strokeaha.119.025553

  10. STEYERBERG, E.W, Clinical prediction models. A practical approach to development, validation, and updating. J. Roy. Stat. Soc. 66(2), 661–662 (2010)

    Google Scholar 

  11. E. Vittinghoff, D.V. Glidden, S.C. Shiboski, C.E. McCulloch, Regression Methods in Biostatistics: Linear, Logistic, Survival, and Repeated Measures Models (Springer Science & Business Media, 2011)

    Google Scholar 

  12. F.E. Harrell Jr, Regression Modeling Strategies: With Applications to Linear Models, Logistic and Ordinal Regression, and Survival Analysis. (Springer, 2015)

    Google Scholar 

  13. J.A. Sterne, et al., Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls. BMJ 338, b2393 (2009). https://doi.org/10.1136/bmj.b2393

  14. A.E. Hoerl, R.W. Kennard, Ridge regression: biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970)

    Article  Google Scholar 

  15. R. Tibshirani, Regression shrinkage and selection via the lasso. J. Roy. Stat. Soc.: Ser. B (Methodol.) 58(1), 267–288 (1996)

    Google Scholar 

  16. T. Hastie, H. Zou, Regularization and variable selection via the elastic net. J. Roy. Stat. Soc. 67(5), 768–768

    Google Scholar 

  17. Y. Huo et al., Efficacy of folic acid therapy in primary prevention of stroke among adults with hypertension in China: the CSPPT randomized clinical trial. JAMA 313(13), 1325–1335 (2015). https://doi.org/10.1001/jama.2015.2274

    Article  Google Scholar 

  18. T.P. Morris, I.R. White, P. Royston, Tuning multiple imputation by predictive mean matching and local residual draws. BMC Med. Res. Methodol. 14(1), 75 (2014)

    Article  Google Scholar 

  19. F.E. Harrell, R.M. Califf, D.B. Pryor, K.L. Lee, R.A. Rosati, Evaluating the yield of medical tests. JAMA 247(18), 2543–2546 (1982)

    Article  Google Scholar 

  20. M.J. Pencina, R.B. D’Agostino, Overall C as a measure of discrimination in survival analysis: model specific population value and confidence interval estimation. Stat. Med. 23(13), 2109–2123 (2004). https://doi.org/10.1002/sim.1802

    Article  Google Scholar 

  21. S. Derksen, H.J. Keselman, Backward, forward and stepwise automated subset selection algorithms: frequency of obtaining authentic and noise variables. Br. J. Math. Stat. Psychol. 45(2), 265–282 (1992)

    Article  Google Scholar 

  22. W. Sauerbrei, M. Schumacher, A bootstrap resampling procedure for model building: application to the Cox regression model. Stat. Med. 11(16), 2093–2109 (1992)

    Article  Google Scholar 

  23. D.G. Altman, P.K. Andersen, Bootstrap investigation of the stability of a cox regression model. Stat. Med. 8(7), 771–783 (1989)

    Article  Google Scholar 

  24. J. Shao, Bootstrap model selection. J. Am. Stat. Assoc. 91(434), 655–665 (1996)

    Article  Google Scholar 

  25. M. W. Heymans, S. van Buuren, D. L. Knol, W. van Mechelen, H. C. de Vet, Variable selection under multiple imputation using the bootstrap in a prognostic study. BMC Med Res Methodol 7(33) (2007). https://doi.org/10.1186/1471-2288-7-33

  26. P.C. Austin, J.V. Tu, Bootstrap methods for developing predictive models. Am. Stat. 58(2), 131–137 (2004). https://doi.org/10.1198/0003130043277

    Article  Google Scholar 

  27. P. C. Austin, Bootstrap model selection had similar performance for selecting authentic and noise variables compared to backward variable elimination: a simulation study. J. Clin. Epidemiol, 61(10), 1009–17 e1 (2008). https://doi.org/10.1016/j.jclinepi.2007.11.014

  28. N. Meinshausen, P. Bühlmann, Stability selection. J. Roy. Stat. Soc. 72(4), 417–473 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

In this study, the samples used for case study was provided from AUSA company. Clinical guidance by professionals in the company was of great importance. We particularly appreciate their contribution to our research.

This paper was funded by a grant from the National Natural Science Foundation of China (Grant No. 71971127) and a grant from the Shenzhen Municipal Development and Reform Commission, Shenzhen Environmental Science and New Energy Technology Engineering Laboratory (Grant Number: SDRC [2016]172).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wai Kin (Victor) Chan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lee, J., Chan, W.K. (2021). Modeling Strategies for Risk Prediction in Clinical Medicine with Restricted Data: Application to Cardiovascular Disease. In: Liu, S., Bohács, G., Shi, X., Shang, X., Huang, A. (eds) LISS 2020. Springer, Singapore. https://doi.org/10.1007/978-981-33-4359-7_2

Download citation

Publish with us

Policies and ethics