Skip to main content

Advertisement

Log in

Constrained canonical correlation

  • Published:
Psychometrika Aims and scope

Abstract

This paper explores some of the problems associated with traditional canonical correlation. A response surface methodology is developed to examine the stability of the derived linear functions, where one wishes to investigate how much the coefficients can change and still be in an ɛ-neighborhood of the globally optimum canonical correlation value. In addition, a discrete (or constrained) canonical correlation method is formulated where the derived coefficients of these linear functions are constrained to be in some small set, e.g., {1, 0, −1}, to aid in the interpretation of the results. An example concerning the psychographic responses of Wharton MBA students of the University of Pennsylvania regarding driving preferences and life-style considerations is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from €39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

Reference notes

  • Hausman, R., Constrained multivariate analysis,Unpublished Memorandum, Bell Laboratories, Holmdel, N.J., 1980a.

  • Hausman, R., Constrained principal components,Unpublished Memorandum, Bell Laboratories, Holmdel, N.J., 1980b.

  • Kettenring, J. R., Canonical analysis,Unpublished Memorandum, Bell Laboratories, Murray Hill, N.J., 1979.

    Google Scholar 

References

  • Anderson, T. W.,Introduction to Multivariate Statistical Analysis, New York: John Wiley & Sons, 1958.

    Google Scholar 

  • Bard, Y.,Nonlinear Parameter Estimation, New York: Academic Press, 1974.

    Google Scholar 

  • Bartlett, M. S., On the theory of statistical regression,Proceedings of the Royal Society of Edinburgh, 1933,53, pp. 260–283.

    Google Scholar 

  • Bentler, P. M., & Woodwards, J. A., Regression on linear composites: Statistical theory and applications.Multivariate Behavioral Research Monographs, 1979, No. 79-1.

  • Bibby, J., & Toutenberg, H.,Prediction and improved estimation in linear models. New York: Wiley, 1977.

    Google Scholar 

  • Bibby, J., Some Effects of Rounding Optimal Estimates,Working Paper, The Open University, England, 1980.

    Google Scholar 

  • Chambers, J.,Computational Methods for Data Analysis, New York: John Wiley & Sons, 1977.

    Google Scholar 

  • Cliff, N. & Krus, D. J., Interpretation of canonical analysis: rotated vs. unrotated solutions,Psychometrika, 1976,4, 35–42.

    Google Scholar 

  • Cooley, W. W., Canonical correlation, Paper presented at the 74-th Annual Convention,American Psychological Association (mimeograph), 1965.

  • Cooley, W. W. & Lohnes, P. R.,Multivariate Procedures for the Behavioral Sciences, New York: John Wiley & Sons, 1962.

    Google Scholar 

  • Darlington, R. B. & Bishop, C. H., Increasing test validity by considering interitem correlations,Journal of Applied Psychology, 1966,50, 322–330.

    Google Scholar 

  • Darlington, R. B., Reduced-variance regression.Psychological Bulletin, 1978,85, 1238–1255.

    Google Scholar 

  • Dempster, A. P., Estimation in multivariate analysis, inMultivariate Analysis (P. R. Krishnaiah, ed.), New York: Academic Press, 1966, 315–334.

    Google Scholar 

  • Garfinkel, R. S. and Nemhauser, G. L.,Integer Programming, New York: John Wiley & Sons, 1972.

    Google Scholar 

  • Gnanadesikan, R.,Methods for Statistical Data Analysis of Multivariate Observations, New York: John Wiley & Sons, 1977.

    Google Scholar 

  • Green, B. R. Jr., Parameter sensitivity in multivariate methods.Multivariate Behavioral Research, 1977,12, 263–287.

    Google Scholar 

  • Green, P. E., Carroll, J. D., & DeSarbo, W. S., An extended application of the δ2 measure of predictor-variable importance,Proceedings of the American Marketing Association Educator's Conference, Chicago: A.M.A., 1979.

    Google Scholar 

  • Hotelling, H., Relations between two sets of variates,Biometrika, 1936,28, 321–377.

    Google Scholar 

  • Kendall, M. G., and Stuart, A. S.,The Advanced Theory of Statistics, Vol. 3, New York: Hafner Publishing Co., 1966.

    Google Scholar 

  • Kendall, M. G.,A Course in Multivariate Analysis, 4-th impression, New York: Hafner Publishing Co., 1968.

    Google Scholar 

  • Levine, M. S.,Canonical Analysis and Factor Comparisons, Beverly Hills: Sage Publications 1977.

    Google Scholar 

  • Lin, S. and Kernighan, M., An effective heuristic algorithm for the traveling salesman problem,Operations Research, 1973,21, 498–516.

    Google Scholar 

  • Meredith, W. Canonical correlations with fallible data,Psychometrika, 1964,29, 55–65.

    Google Scholar 

  • Pruzek, R. M., & Frederick, R. C., Weighting predictors in linear models: Alternatives to least squares and limitations of equal weights.Psychological Bulletin, 1978,85, 254–266.

    Google Scholar 

  • Reingold, E. M., Nievergelt, J., & Deo, N.,Combinatorial Algorithms, Englewood Cliffs, New Jersey: Prentice Hall, 1977.

    Google Scholar 

  • Roy, S. N.,Some Aspects of Multivariate Analysis, New York: John Wiley and Sons, Inc., 1957.

    Google Scholar 

  • Scheffé, H.,The Analysis of Variance, New York: John Wiley and Sons, Inc., 1959.

    Google Scholar 

  • Thorndike, R. M., Weiss, D. J., & Davis, R. V., Canonical correlation of vocational interests and vocational needs,Journal of Counseling Psychology, 1968,15, 101–106.

    Google Scholar 

  • Thorndike, R. M. & Weiss, D. J., A Study of the stability of canonical correlations and canonical components,Educational and Psychological Measurement, 1973,33, 123–134.

    Google Scholar 

  • Wainer, H., Estimating coefficients in linear models: It don't make no nevermind.Psychological Bulletin, 1976,83, 213–217.

    Google Scholar 

  • Wainer, H., On the sensitivity of regression and regressors.Psychological Bulletin, 1978,85, 267–273.

    Google Scholar 

  • Weinberg, S. L. & Darlington, R. B., Canonical analysis when number of variables is large relative to sample size,Journal of Educational Statistics, 1976,1, 313–332.

    Google Scholar 

  • Winer, B. J., Statistics and data analysis: Trading bias for reduced mean square error.Annual Review of Psychology, 1978,29, 647–6811.

    Google Scholar 

  • Vinod, H. D., Canonical ridge and econometrics of joint production,Journal of Econometrics, 1977,4, 147–166.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Wayne S. DeSarbo, Robert Jausman, Shen Lin, and Wesley Thompson are all Members of Technical Staff at Bell Laboratories. We wish to express our gratitude to the editor and reviewers of this paper for their insightful remarks.

Rights and permissions

Reprints and permissions

About this article

Cite this article

DeSarbo, W.S., Hausman, R.E., Lin, S. et al. Constrained canonical correlation. Psychometrika 47, 489–516 (1982). https://doi.org/10.1007/BF02293711

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02293711

Key words