Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1993 Feb 15;290(Pt 1):249–258. doi: 10.1042/bj2900249

Characterization of the inhibition by stilbene disulphonates and phloretin of lactate and pyruvate transport into rat and guinea-pig cardiac myocytes suggests the presence of two kinetically distinct carriers in heart cells.

X Wang 1, R C Poole 1, A P Halestrap 1, A J Levi 1
PMCID: PMC1132408  PMID: 8439293

Abstract

1. The kinetics of transport of pyruvate (Km 0.20 mM), L-lactate (Km 2.2 mM) and D-lactate (Ki 10.2 mM) into rat cardiac myocytes were studied and compared with those for guinea-pig heart cells [Poole, Halestrap, Price and Levi (1989) Biochem. J. 264, 409-418] whose equivalent values were 0.07, 2.3 and 6.6 mM respectively. Maximal rates of transport were about 5-fold higher in the rat heart cells. 2. 4,4'-Dibenzamidostilbene-2,2'-disulphonate (DBDS), a powerful inhibitor of monocarboxylate transport into erythrocytes [Poole & Halestrap (1991) Biochem. J. 275, 307-312], was found to be a potent but apparently partial inhibitor of lactate and pyruvate transport, with an apparent Ki value at 0.5 mM L-lactate of about 16 microM in both species. Maximal inhibition was 50% and 80% in rat and guinea-pig cells respectively. 3. The maximal extent of inhibition and apparent Ki values were dependent on both the substrate transported and its concentration. Maximum inhibition was less and the Ki was greater at higher substrate concentrations. 4. A variety of other stilbene disulphonates were studied which showed different Ki values and maximal extents of inhibition. 5. Phloretin was a significantly less potent inhibitor of transport into both rat (Ki 25 microM) and guinea-pig (Ki 16 microM) heart cells than into rat erythrocytes (Ki 1.4 microM). In the rat but not the guinea-pig heart cells, inhibition appeared partial (maximal inhibition 84%). 6. We demonstrate that our results can be explained by the presence of two monocarboxylate carriers in heart cells, both with Km values for L-lactate of about 2 mM and inhibited by alpha-cyano-4-hydroxycinnamate, but with different affinities for other substrates and inhibitors. One carrier is sensitive to inhibition by stilbene disulphonates and has lower Km values for pyruvate (0.05-0.10 mM) and D-lactate (5 mM), whereas the other has higher Km values for pyruvate (0.30 mM) and D-lactate (25 mM), and is relatively insensitive to stilbene disulphonates. Rat heart cells possess more of the latter carrier and guinea-pig heart cells more of the former. 7. The significance of these results for the study of lactate transport in the perfused heart is discussed.

Full text

PDF
249

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen D. G., Morris P. G., Orchard C. H., Pirolo J. S. A nuclear magnetic resonance study of metabolism in the ferret heart during hypoxia and inhibition of glycolysis. J Physiol. 1985 Apr;361:185–204. doi: 10.1113/jphysiol.1985.sp015640. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Allen D. G., Orchard C. H. Myocardial contractile function during ischemia and hypoxia. Circ Res. 1987 Feb;60(2):153–168. doi: 10.1161/01.res.60.2.153. [DOI] [PubMed] [Google Scholar]
  3. Bashford C. L., Pasternak C. A. Plasma membrane potential of Lettré cells does not depend on cation gradients but on pumps. J Membr Biol. 1984;79(3):275–284. doi: 10.1007/BF01871066. [DOI] [PubMed] [Google Scholar]
  4. Bond J. M., Herman B., Lemasters J. J. Protection by acidotic pH against anoxia/reoxygenation injury to rat neonatal cardiac myocytes. Biochem Biophys Res Commun. 1991 Sep 16;179(2):798–803. doi: 10.1016/0006-291x(91)91887-i. [DOI] [PubMed] [Google Scholar]
  5. Brooks W. M., Willis R. J. 31P nuclear magnetic resonance study of the recovery characteristics of high energy phosphate compounds and intracellular pH after global ischaemia in the perfused guinea-pig heart. J Mol Cell Cardiol. 1983 Aug;15(8):495–502. doi: 10.1016/0022-2828(83)90325-5. [DOI] [PubMed] [Google Scholar]
  6. Deuticke B., Lütkemeier P., Poser B. Influence of phloretin and alcohols on barrier defects in the erythrocyte membrane caused by oxidative injury and electroporation. Biochim Biophys Acta. 1991 Aug 26;1067(2):111–122. doi: 10.1016/0005-2736(91)90032-4. [DOI] [PubMed] [Google Scholar]
  7. Deuticke B. Monocarboxylate transport in erythrocytes. J Membr Biol. 1982;70(2):89–103. doi: 10.1007/BF01870219. [DOI] [PubMed] [Google Scholar]
  8. Deuticke B. Properties and structural basis of simple diffusion pathways in the erythrocyte membrane. Rev Physiol Biochem Pharmacol. 1977;78:1–97. doi: 10.1007/BFb0027721. [DOI] [PubMed] [Google Scholar]
  9. Deuticke B., Rickert I., Beyer E. Stereoselective, SH-dependent transfer of lactate in mammalian erythrocytes. Biochim Biophys Acta. 1978 Feb 2;507(1):137–155. doi: 10.1016/0005-2736(78)90381-4. [DOI] [PubMed] [Google Scholar]
  10. Fabiato A., Fabiato F. Effects of pH on the myofilaments and the sarcoplasmic reticulum of skinned cells from cardiace and skeletal muscles. J Physiol. 1978 Mar;276:233–255. doi: 10.1113/jphysiol.1978.sp012231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Garlick P. B., Radda G. K., Seeley P. J. Studies of acidosis in the ischaemic heart by phosphorus nuclear magnetic resonance. Biochem J. 1979 Dec 15;184(3):547–554. doi: 10.1042/bj1840547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gould G. W., Bell G. I. Facilitative glucose transporters: an expanding family. Trends Biochem Sci. 1990 Jan;15(1):18–23. doi: 10.1016/0968-0004(90)90125-u. [DOI] [PubMed] [Google Scholar]
  13. Gruber W., Deuticke B. Comparative aspects of phosphate transfer across mammalian erythrocyte membranes. J Membr Biol. 1973 Aug 30;13(1):19–36. doi: 10.1007/BF01868218. [DOI] [PubMed] [Google Scholar]
  14. Haggerty J. G., Agarwal N., Reilly R. F., Adelberg E. A., Slayman C. W. Pharmacologically different Na/H antiporters on the apical and basolateral surfaces of cultured porcine kidney cells (LLC-PK1). Proc Natl Acad Sci U S A. 1988 Sep;85(18):6797–6801. doi: 10.1073/pnas.85.18.6797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Halestrap A. P. Calcium-dependent opening of a non-specific pore in the mitochondrial inner membrane is inhibited at pH values below 7. Implications for the protective effect of low pH against chemical and hypoxic cell damage. Biochem J. 1991 Sep 15;278(Pt 3):715–719. doi: 10.1042/bj2780715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Halestrap A. P., Denton R. M. Specific inhibition of pyruvate transport in rat liver mitochondria and human erythrocytes by alpha-cyano-4-hydroxycinnamate. Biochem J. 1974 Feb;138(2):313–316. doi: 10.1042/bj1380313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Halestrap A. P., Denton R. M. The specificity and metabolic implications of the inhibition of pyruvate transport in isolated mitochondria and intact tissue preparations by alpha-Cyano-4-hydroxycinnamate and related compounds. Biochem J. 1975 Apr;148(1):97–106. doi: 10.1042/bj1480097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Halestrap A. P., Poole R. C., Cranmer S. L. Mechanisms and regulation of lactate, pyruvate and ketone body transport across the plasma membrane of mammalian cells and their metabolic consequences. Biochem Soc Trans. 1990 Dec;18(6):1132–1135. doi: 10.1042/bst0181132. [DOI] [PubMed] [Google Scholar]
  19. Isenberg G., Klockner U. Calcium tolerant ventricular myocytes prepared by preincubation in a "KB medium". Pflugers Arch. 1982 Oct;395(1):6–18. doi: 10.1007/BF00584963. [DOI] [PubMed] [Google Scholar]
  20. Juel C. Intracellular pH recovery and lactate efflux in mouse soleus muscles stimulated in vitro: the involvement of sodium/proton exchange and a lactate carrier. Acta Physiol Scand. 1988 Mar;132(3):363–371. doi: 10.1111/j.1748-1716.1988.tb08340.x. [DOI] [PubMed] [Google Scholar]
  21. LEFEVRE P. G., MARSHALL J. K. The atachment of phloretin and analogues to human erythrocytes in connection with inhibition of sugar transport. J Biol Chem. 1959 Nov;234:3022–3026. [PubMed] [Google Scholar]
  22. Lee C. O., Levi A. J. The role of intracellular sodium in the control of cardiac contraction. Ann N Y Acad Sci. 1991;639:408–427. doi: 10.1111/j.1749-6632.1991.tb17329.x. [DOI] [PubMed] [Google Scholar]
  23. Lynch A., Best L. Cytosolic pH and pancreatic beta-cell function. Biochem Pharmacol. 1990 Aug 1;40(3):411–416. doi: 10.1016/0006-2952(90)90537-u. [DOI] [PubMed] [Google Scholar]
  24. Mainwood G. W., Worsley-Brown P. The effects of extracellular pH and buffer concentration on the efflux of lactate from frog sartorius muscle. J Physiol. 1975 Aug;250(1):1–22. doi: 10.1113/jphysiol.1975.sp011040. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Mason M. J., Thomas R. C. A microelectrode study of the mechanisms of L-lactate entry into and release from frog sartorius muscle. J Physiol. 1988 Jun;400:459–479. doi: 10.1113/jphysiol.1988.sp017132. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Opie L. H., Owen P., Thomas M., Samson R. Coronary sinus lactate measurements in assessment of myocardial ischemia. Comparison with changes in lactate-pyruvate and beta-hydroxybutyrate-acetoacetate ratios and with release of hydrogen, phosphate and potassium ions from the heart. Am J Cardiol. 1973 Sep 7;32(3):295–305. doi: 10.1016/s0002-9149(73)80137-7. [DOI] [PubMed] [Google Scholar]
  27. Poole-Wilson P. A. Regulation of intracellular pH in the myocardium; relevance to pathology. Mol Cell Biochem. 1989 Sep 7;89(2):151–155. doi: 10.1007/BF00220768. [DOI] [PubMed] [Google Scholar]
  28. Poole R. C., Cranmer S. L., Halestrap A. P., Levi A. J. Substrate and inhibitor specificity of monocarboxylate transport into heart cells and erythrocytes. Further evidence for the existence of two distinct carriers. Biochem J. 1990 Aug 1;269(3):827–829. doi: 10.1042/bj2690827. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Poole R. C., Cranmer S. L., Holdup D. W., Halestrap A. P. Inhibition of L-lactate transport and band 3-mediated anion transport in erythrocytes by the novel stilbenedisulphonate N,N,N',N'-tetrabenzyl-4,4'-diaminostilbene-2,2'-disulpho nat e (TBenzDS). Biochim Biophys Acta. 1991 Nov 18;1070(1):69–76. doi: 10.1016/0005-2736(91)90147-z. [DOI] [PubMed] [Google Scholar]
  30. Poole R. C., Halestrap A. P. Identification and partial purification of the erythrocyte L-lactate transporter. Biochem J. 1992 May 1;283(Pt 3):855–862. doi: 10.1042/bj2830855. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Poole R. C., Halestrap A. P., Price S. J., Levi A. J. The kinetics of transport of lactate and pyruvate into isolated cardiac myocytes from guinea pig. Kinetic evidence for the presence of a carrier distinct from that in erythrocytes and hepatocytes. Biochem J. 1989 Dec 1;264(2):409–418. doi: 10.1042/bj2640409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Poole R. C., Halestrap A. P. Reversible and irreversible inhibition, by stilbenedisulphonates, of lactate transport into rat erythrocytes. Identification of some new high-affinity inhibitors. Biochem J. 1991 Apr 15;275(Pt 2):307–312. doi: 10.1042/bj2750307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Ramamoorthy S., Tiruppathi C., Nair C. N., Mahesh V. B., Leibach F. H., Ganapathy V. Relative sensitivity to inhibition by cimetidine and clonidine differentiates between the two types of Na(+)-H+ exchangers in cultured cells. Biochem J. 1991 Dec 1;280(Pt 2):317–322. doi: 10.1042/bj2800317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Richards T. L., Terrier F., Sievers R. E., Lipton M. J., Moseley M. E., Higgins C. B. Lactate accumulation in ischemic- and anoxic-isolated rat hearts assessed by H-1 spectroscopy. Invest Radiol. 1987 Aug;22(8):638–641. doi: 10.1097/00004424-198708000-00004. [DOI] [PubMed] [Google Scholar]
  35. Vaughan-Jones R. D., Eisner D. A., Lederer W. J. Effects of changes of intracellular pH on contraction in sheep cardiac Purkinje fibers. J Gen Physiol. 1987 Jun;89(6):1015–1032. doi: 10.1085/jgp.89.6.1015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Vaughan-Jones R. D., Wu M. L., Bountra C. Sodium-hydrogen exchange and its role in controlling contractility during acidosis in cardiac muscle. Mol Cell Biochem. 1989 Sep 7;89(2):157–162. doi: 10.1007/BF00220769. [DOI] [PubMed] [Google Scholar]
  37. Wheeler T. J., Hinkle P. C. Kinetic properties of the reconstituted glucose transporter from human erythrocytes. J Biol Chem. 1981 Sep 10;256(17):8907–8914. [PubMed] [Google Scholar]
  38. Yang J., Clark A. E., Harrison R., Kozka I. J., Holman G. D. Trafficking of glucose transporters in 3T3-L1 cells. Inhibition of trafficking by phenylarsine oxide implicates a slow dissociation of transporters from trafficking proteins. Biochem J. 1992 Feb 1;281(Pt 3):809–817. doi: 10.1042/bj2810809. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES