Abstract
Synthetic lipopeptides activate superoxide-anion (O2-) formation in human neutrophils in a pertussis-toxin (PTX)-sensitive manner, suggesting the involvement of G-proteins of the Gi family in the signal-transduction pathway. We compared G-protein activation by lipopeptides and the chemotactic peptide N-formylmethionyl-leucyl-phenylalanine (fMLP) in dibutyryl-cyclic-AMP-differentiated HL-60 cells. The lipopeptide (2S)-2-palmitoylamino-6-palmitoyloxymethyl-7-palmitoyloxy heptanoyl-SK4 (Pam3AhhSK4) and fMLP activated high-affinity GTPase, i.e. the enzymic activity of G-protein alpha-subunits, in HL-60 membranes in a time- and protein-dependent manner, but they had no effect on Mg(2+)-ATPase and Na+/K(+)-ATPase. Pam3AhhSK4 and fMLP increased Vmax. of GTP hydrolysis. Pam3AhhSK4 activated GTP hydrolysis with half-maximal and maximal effects at about 2 microM and 10 microM respectively. Other lipopeptides activated GTP hydrolysis as well. Lipopeptides were less effective than fMLP to activate GTPase. In membranes from PTX-treated cells, the stimulatory effects of lipopeptides and fMLP on GTPase were abolished. In N-ethylmaleimide-treated membranes, the relative stimulatory effect of Pam3AhhSK4 on GTP hydrolysis was enhanced, whereas that of fMLP was diminished. fMLP and Pam3AhhSK4 activated GTPase in an over-additive manner in N-ethylmaleimide-treated membranes. Unlike fMLP, Pam3AhhSK4 did not enhance incorporation of GTP azidoanilide into, and cholera-toxin-catalysed ADP-ribosylation of Gi-protein alpha-subunits in, HL-60 membranes and did not induce rises in cytosolic Ca2+ concentration. Pam3AhhSK4 and fMLP stimulated phosphatidic acid formation in a PTX-sensitive manner. Pam3AhhSK4 itself did not activate O2- formation, but potentiated the stimulatory effects of fMLP. Our data suggest that (i) lipopeptides activate the GTPase of Gi-proteins, (ii) lipopeptides and fMLP activate Gi-proteins differently, (iii) lipopeptides stimulate phospholipase D via Gi-proteins, and (iv) phosphatidic acid formation is not sufficient for activation of O2- formation.
Full text
PDF






Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bauldry S. A., Bass D. A., Cousart S. L., McCall C. E. Tumor necrosis factor alpha priming of phospholipase D in human neutrophils. Correlation between phosphatidic acid production and superoxide generation. J Biol Chem. 1991 Mar 5;266(7):4173–4179. [PubMed] [Google Scholar]
- Bauldry S. A., Elsey K. L., Bass D. A. Activation of NADPH oxidase and phospholipase D in permeabilized human neutrophils. Correlation between oxidase activation and phosphatidic acid production. J Biol Chem. 1992 Dec 15;267(35):25141–25152. [PubMed] [Google Scholar]
- Bessler W. G., Cox M., Lex A., Suhr B., Wiesmüller K. H., Jung G. Synthetic lipopeptide analogs of bacterial lipoprotein are potent polyclonal activators for murine B lymphocytes. J Immunol. 1985 Sep;135(3):1900–1905. [PubMed] [Google Scholar]
- Bourgoin S., Grinstein S. Peroxides of vanadate induce activation of phospholipase D in HL-60 cells. Role of tyrosine phosphorylation. J Biol Chem. 1992 Jun 15;267(17):11908–11916. [PubMed] [Google Scholar]
- Bourgoin S., Plante E., Gaudry M., Naccache P. H., Borgeat P., Poubelle P. E. Involvement of a phospholipase D in the mechanism of action of granulocyte-macrophage colony-stimulating factor (GM-CSF): priming of human neutrophils in vitro with GM-CSF is associated with accumulation of phosphatidic acid and diradylglycerol. J Exp Med. 1990 Sep 1;172(3):767–777. doi: 10.1084/jem.172.3.767. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Braun V. Covalent lipoprotein from the outer membrane of Escherichia coli. Biochim Biophys Acta. 1975 Oct 31;415(3):335–377. doi: 10.1016/0304-4157(75)90013-1. [DOI] [PubMed] [Google Scholar]
- Cassel D., Pfeuffer T. Mechanism of cholera toxin action: covalent modification of the guanyl nucleotide-binding protein of the adenylate cyclase system. Proc Natl Acad Sci U S A. 1978 Jun;75(6):2669–2673. doi: 10.1073/pnas.75.6.2669. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cheung A. H., Huang R. R., Strader C. D. Involvement of specific hydrophobic, but not hydrophilic, amino acids in the third intracellular loop of the beta-adrenergic receptor in the activation of Gs. Mol Pharmacol. 1992 Jun;41(6):1061–1065. [PubMed] [Google Scholar]
- Ebel H., Aulbert E., Merker H. J. Isolation of the basal and lateral plasma membranes of rat kidney tubule cells. Biochim Biophys Acta. 1976 May 21;433(3):531–546. doi: 10.1016/0005-2736(76)90279-0. [DOI] [PubMed] [Google Scholar]
- Feltner D. E., Smith R. H., Marasco W. A. Characterization of the plasma membrane bound GTPase from rabbit neutrophils. I. Evidence for an Ni-like protein coupled to the formyl peptide, C5a, and leukotriene B4 chemotaxis receptors. J Immunol. 1986 Sep 15;137(6):1961–1970. [PubMed] [Google Scholar]
- Gierschik P., Sidiropoulos D., Jakobs K. H. Two distinct Gi-proteins mediate formyl peptide receptor signal transduction in human leukemia (HL-60) cells. J Biol Chem. 1989 Dec 25;264(36):21470–21473. [PubMed] [Google Scholar]
- Higashijima T., Burnier J., Ross E. M. Regulation of Gi and Go by mastoparan, related amphiphilic peptides, and hydrophobic amines. Mechanism and structural determinants of activity. J Biol Chem. 1990 Aug 25;265(24):14176–14186. [PubMed] [Google Scholar]
- Higashijima T., Uzu S., Nakajima T., Ross E. M. Mastoparan, a peptide toxin from wasp venom, mimics receptors by activating GTP-binding regulatory proteins (G proteins). J Biol Chem. 1988 May 15;263(14):6491–6494. [PubMed] [Google Scholar]
- Jakobs K. H., Lasch P., Minuth M., Aktories K., Schultz G. Uncoupling of alpha-adrenoceptor-mediated inhibition of human platelet adenylate cyclase by N-ethylmaleimide. J Biol Chem. 1982 Mar 25;257(6):2829–2833. [PubMed] [Google Scholar]
- Kanaho Y., Takahashi K., Tomita U., Iiri T., Katada T., Ui M., Nozawa Y. A protein kinase C inhibitor, staurosporine, activates phospholipase D via a pertussis toxin-sensitive GTP-binding protein in rabbit peritoneal neutrophils. J Biol Chem. 1992 Nov 25;267(33):23554–23559. [PubMed] [Google Scholar]
- Kessels G. C., Roos D., Verhoeven A. J. fMet-Leu-Phe-induced activation of phospholipase D in human neutrophils. Dependence on changes in cytosolic free Ca2+ concentration and relation with respiratory burst activation. J Biol Chem. 1991 Dec 5;266(34):23152–23156. [PubMed] [Google Scholar]
- Krautwurst D., Seifert R., Hescheler J., Schultz G. Formyl peptides and ATP stimulate Ca2+ and Na+ inward currents through non-selective cation channels via G-proteins in dibutyryl cyclic AMP-differentiated HL-60 cells. Involvement of Ca2+ and Na+ in the activation of beta-glucuronidase release and superoxide production. Biochem J. 1992 Dec 15;288(Pt 3):1025–1035. doi: 10.1042/bj2881025. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kupper R. W., Dewald B., Jakobs K. H., Baggiolini M., Gierschik P. G-protein activation by interleukin 8 and related cytokines in human neutrophil plasma membranes. Biochem J. 1992 Mar 1;282(Pt 2):429–434. doi: 10.1042/bj2820429. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- McLeish K. R., Gierschik P., Schepers T., Sidiropoulos D., Jakobs K. H. Evidence that activation of a common G-protein by receptors for leukotriene B4 and N-formylmethionyl-leucyl-phenylalanine in HL-60 cells occurs by different mechanisms. Biochem J. 1989 Jun 1;260(2):427–434. doi: 10.1042/bj2600427. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mousli M., Bronner C., Landry Y., Bockaert J., Rouot B. Direct activation of GTP-binding regulatory proteins (G-proteins) by substance P and compound 48/80. FEBS Lett. 1990 Jan 1;259(2):260–262. doi: 10.1016/0014-5793(90)80023-c. [DOI] [PubMed] [Google Scholar]
- Murphy P. M., Ozçelik T., Kenney R. T., Tiffany H. L., McDermott D., Francke U. A structural homologue of the N-formyl peptide receptor. Characterization and chromosome mapping of a peptide chemoattractant receptor family. J Biol Chem. 1992 Apr 15;267(11):7637–7643. [PubMed] [Google Scholar]
- Norgauer J., Eberle M., Lemke H. D., Aktories K. Activation of human neutrophils by mastoparan. Reorganization of the cytoskeleton, formation of phosphatidylinositol 3,4,5-trisphosphate, secretion up-regulation of complement receptor type 3 and superoxide anion production are stimulated by mastoparan. Biochem J. 1992 Mar 1;282(Pt 2):393–397. doi: 10.1042/bj2820393. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Offermanns S., Schultz G., Rosenthal W. Identification of receptor-activated G proteins with photoreactive GTP analog, [alpha-32P]GTP azidoanilide. Methods Enzymol. 1991;195:286–301. doi: 10.1016/0076-6879(91)95174-i. [DOI] [PubMed] [Google Scholar]
- Offermanns S., Seifert R., Metzger J. W., Jung G., Lieberknecht A., Schmidt U., Schultz G. Lipopeptides are effective stimulators of tyrosine phosphorylation in human myeloid cells. Biochem J. 1992 Mar 1;282(Pt 2):551–557. doi: 10.1042/bj2820551. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Offermans S., Schäfer R., Hoffmann B., Bombien E., Spicher K., Hinsch K. D., Schultz G., Rosenthal W. Agonist-sensitive binding of a photoreactive GTP analog to a G-protein alpha-subunit in membranes of HL-60 cells. FEBS Lett. 1990 Jan 15;260(1):14–18. doi: 10.1016/0014-5793(90)80054-m. [DOI] [PubMed] [Google Scholar]
- Pai J. K., Siegel M. I., Egan R. W., Billah M. M. Phospholipase D catalyzes phospholipid metabolism in chemotactic peptide-stimulated HL-60 granulocytes. J Biol Chem. 1988 Sep 5;263(25):12472–12477. [PubMed] [Google Scholar]
- Perianin A., Snyderman R. Mastoparan, a wasp venom peptide, identifies two discrete mechanisms for elevating cytosolic calcium and inositol trisphosphates in human polymorphonuclear leukocytes. J Immunol. 1989 Sep 1;143(5):1669–1673. [PubMed] [Google Scholar]
- Resch K., Bessler W. Activation of lymphocyte populations with concanavalin A or with lipoprotein and lipopeptide from the outer cell wall of Escherichia coli: correlation of early membrane changes with induction of macromolecular synthesis. Eur J Biochem. 1981 Apr;115(2):247–252. doi: 10.1111/j.1432-1033.1981.tb05230.x. [DOI] [PubMed] [Google Scholar]
- Rosenthal W., Koesling D., Rudolph U., Kleuss C., Pallast M., Yajima M., Schultz G. Identification and characterization of the 35-kDa beta subunit of guanine-nucleotide-binding proteins by an antiserum raised against transducin. Eur J Biochem. 1986 Jul 15;158(2):255–263. doi: 10.1111/j.1432-1033.1986.tb09745.x. [DOI] [PubMed] [Google Scholar]
- Rosoff P. M., Savage N., Dinarello C. A. Interleukin-1 stimulates diacylglycerol production in T lymphocytes by a novel mechanism. Cell. 1988 Jul 1;54(1):73–81. doi: 10.1016/0092-8674(88)90181-x. [DOI] [PubMed] [Google Scholar]
- Rossi F. The O2- -forming NADPH oxidase of the phagocytes: nature, mechanisms of activation and function. Biochim Biophys Acta. 1986 Nov 4;853(1):65–89. doi: 10.1016/0304-4173(86)90005-4. [DOI] [PubMed] [Google Scholar]
- Schulz M., Zinkernagel R. M., Hengartner H. Peptide-induced antiviral protection by cytotoxic T cells. Proc Natl Acad Sci U S A. 1991 Feb 1;88(3):991–993. doi: 10.1073/pnas.88.3.991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Seifert R., Höer A., Offermanns S., Buschauer A., Schunack W. Histamine increases cytosolic Ca2+ in dibutyryl-cAMP-differentiated HL-60 cells via H1 receptors and is an incomplete secretagogue. Mol Pharmacol. 1992 Aug;42(2):227–234. [PubMed] [Google Scholar]
- Seifert R., Schultz G. Reversible activation of NADPH oxidase in membranes of HL-60 human leukemic cells. Biochem Biophys Res Commun. 1987 Aug 14;146(3):1296–1302. doi: 10.1016/0006-291x(87)90790-x. [DOI] [PubMed] [Google Scholar]
- Seifert R., Schultz G., Richter-Freund M., Metzger J., Wiesmüller K. H., Jung G., Bessler W. G., Hauschildt S. Activation of superoxide formation and lysozyme release in human neutrophils by the synthetic lipopeptide Pam3Cys-Ser-(Lys)4. Involvement of guanine-nucleotide-binding proteins and synergism with chemotactic peptides. Biochem J. 1990 May 1;267(3):795–802. doi: 10.1042/bj2670795. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Seifert R., Schultz G. The superoxide-forming NADPH oxidase of phagocytes. An enzyme system regulated by multiple mechanisms. Rev Physiol Biochem Pharmacol. 1991;117:1–338. [PubMed] [Google Scholar]
- Seifert R., Serke S., Huhn D., Bessler W. G., Hauschildt S., Metzger J., Wismüller K. H., Jung G. Incomplete functional differentiation of HL-60 leukemic cells by synthetic lipopeptides. Partial inhibition by pertussis toxin of enhanced superoxide formation. Eur J Biochem. 1992 Jan 15;203(1-2):143–151. doi: 10.1111/j.1432-1033.1992.tb19839.x. [DOI] [PubMed] [Google Scholar]
- Serra M. C., Bazzoni F., Della Bianca V., Greskowiak M., Rossi F. Activation of human neutrophils by substance P. Effect on oxidative metabolism, exocytosis, cytosolic Ca2+ concentration and inositol phosphate formation. J Immunol. 1988 Sep 15;141(6):2118–2124. [PubMed] [Google Scholar]
- Tamaoki T., Nomoto H., Takahashi I., Kato Y., Morimoto M., Tomita F. Staurosporine, a potent inhibitor of phospholipid/Ca++dependent protein kinase. Biochem Biophys Res Commun. 1986 Mar 13;135(2):397–402. doi: 10.1016/0006-291x(86)90008-2. [DOI] [PubMed] [Google Scholar]
- Tomita U., Inanobe A., Kobayashi I., Takahashi K., Ui M., Katada T. Direct interactions of mastoparan and compound 48/80 with GTP-binding proteins. J Biochem. 1991 Jan;109(1):184–189. doi: 10.1093/oxfordjournals.jbchem.a123342. [DOI] [PubMed] [Google Scholar]
- Walseth T. F., Yuen P. S., Moos M. C., Jr Preparation of alpha-32P-labeled nucleoside triphosphates, nicotinamide adenine dinucleotide, and cyclic nucleotides for use in determining adenylyl and guanylyl cyclases and cyclic nucleotide phosphodiesterase. Methods Enzymol. 1991;195:29–44. doi: 10.1016/0076-6879(91)95152-a. [DOI] [PubMed] [Google Scholar]
- Wenzel-Seifert K., Seifert R. Cyclosporin H is a potent and selective formyl peptide receptor antagonist. Comparison with N-t-butoxycarbonyl-L-phenylalanyl-L-leucyl-L-phenylalanyl-L- leucyl-L-phenylalanine and cyclosporins A, B, C, D, and E. J Immunol. 1993 May 15;150(10):4591–4599. [PubMed] [Google Scholar]