Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2003 May-Jun;33(5-6):471-8.
doi: 10.1016/s0143-4160(03)00062-9.

Vertebrate and invertebrate TRPV-like mechanoreceptors

Affiliations
Review

Vertebrate and invertebrate TRPV-like mechanoreceptors

Hideki Mutai et al. Cell Calcium. 2003 May-Jun.

Abstract

Our senses of touch, hearing, and balance are mediated by mechanosensitive ion channels. In vertebrates, little is known about the molecular composition of these mechanoreceptors, an example of which is the transduction channel of the inner ear's receptor cells, hair cells. Members of the TRP family of ion channels are considered candidates for the vertebrate hair cell's mechanosensitive transduction channel and here we review the evidence for this candidacy. We start by examining the results of genetic screens in invertebrates that identified members of the TRP gene family as core components of mechanoreceptors. In particular, we discuss the Caenorhabditis elegans OSM-9 channel, an invertebrate TRPV channel, and the Drosophila melanogaster TRP channel NOMPC. We then evaluate basic features of TRPV4, a vertebrate member of the TRPV subfamily, which is gated by a variety of physical and chemical stimuli including temperature, osmotic pressure, and ligands. Finally, we compare the characteristics of all discussed mechanoreceptive TRP channels with the biophysical characteristics of hair cell mechanotransduction, speculating about the possible make-up of the elusive inner ear mechanoreceptor.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources