Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Feb;13(2):208-15.
doi: 10.1038/sj.ejhg.5201300.

Loss of lysosomal association of cystatin B proteins representing progressive myoclonus epilepsy, EPM1, mutations

Affiliations

Loss of lysosomal association of cystatin B proteins representing progressive myoclonus epilepsy, EPM1, mutations

Kirsi Alakurtti et al. Eur J Hum Genet. 2005 Feb.

Erratum in

  • Eur J Hum Genet. 2005 Feb;13(2):264

Abstract

Loss-of-function mutations in the cystatin B (CSTB), a cysteine protease inhibitor, gene underlie progressive myoclonus epilepsy of Unverricht-Lundborg type (EPM1), characterized by myoclonic and tonic-clonic seizures, ataxia and a progressive course. A minisatellite repeat expansion in the promoter region of the CSTB gene is the most common mutation in EPM1 patients and leads to reduced mRNA levels. Seven other mutations altering the structure of CSTB, or predicting altered splicing, have been described. Using a novel monoclonal CSTB antibody and organelle-specific markers in human primary myoblasts, we show here that endogenous CSTB localizes not only to the nucleus and cytoplasm but also associates with lysosomes. Upon differentiation to myotubes, CSTB becomes excluded from the nucleus and lysosomes, suggesting that the subcellular distribution of CSTB is dependent on the differentiation status of the cell. Four patient mutations altering the CSTB polypeptide were transiently expressed in BHK-21 cells. The p.Lys73fsX2-truncated mutant protein shows diffuse cytoplasmic and nuclear distribution, whereas p.Arg68X is rapidly degraded. Two missense mutations, the previously described p.Gly4Arg affecting the highly conserved glycine, critical for cathepsin binding, and a novel mutation, p.Gln71Pro, fail to associate with lysosomes. These data imply an important lysosome-associated physiological function for CSTB and suggest that loss of this association contributes to the molecular pathogenesis of EPM1.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms