Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Aug 26;384(3):294-9.
doi: 10.1016/j.neulet.2005.04.091.

Inflammation alters sodium currents and excitability of temporomandibular joint afferents

Affiliations

Inflammation alters sodium currents and excitability of temporomandibular joint afferents

Natasha M Flake et al. Neurosci Lett. .

Abstract

Inflammation-induced changes in voltage-gated sodium currents (I(Na)) in primary afferent neurons may contribute to hyperexcitability and pain. The present study was designed to test the hypothesis that persistent inflammation of the temporomandibular joint (TMJ) increases I(Na) in TMJ afferents. Acutely dissociated retrogradely labeled TMJ afferents were studied using whole-cell patch clamp techniques three days following Complete Freund's Adjuvant-induced inflammation of the TMJ. Inflammation was associated with a decrease in tetrodotoxin (TTX)-sensitive Na+ conductance and no significant change in slowly inactivating TTX-resistant Na+ conductance. However, inflammation increased the excitability of TMJ afferents. These results suggest that changes in ion channels other than those underlying TTX-sensitive and the slowly inactivating TTX-resistant Na+ conductance are likely to account for the inflammation-induced increase in the excitability of TMJ afferents.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources