Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review

Sodium Channel Mutations and Epilepsy

In: Jasper's Basic Mechanisms of the Epilepsies [Internet]. 4th edition. Bethesda (MD): National Center for Biotechnology Information (US); 2012.
Affiliations
Free Books & Documents
Review

Sodium Channel Mutations and Epilepsy

William A. Catterall.
Free Books & Documents

Excerpt

Voltage-gated sodium channels initiate action potentials in brain neurons, and sodium channel blockers are used in therapy of epilepsy. Mutations in sodium channels are responsible for genetic epilepsy syndromes with a wide range of severity. Generalized Epilepsy with Febrile Seizures Plus (GEFS+) is caused by missense mutations in NaV1.1 channels, which have variable functional effects on sodium channels expressed in non-neuronal cells, but may primarily cause loss of function when expressed in mice. Complete loss-of-function mutations in NaV1.1 cause Severe Myoclonic Epilepsy of Infancy (SMEI or Dravet Syndrome), which involves severe, intractable epilepsy and co-morbidities of ataxia, sleep disturbance, and cognitive impairment. Mice with loss-of-function mutations in NaV1.1 channels have severely impaired sodium currents and action potential firing in hippocampal GABAergic inhibitory neurons without detectable effect on the excitatory pyramidal neurons, which would cause hyperexcitability and contribute to seizures in SMEI. Similarly, sodium currents and action potential firing are impaired in the GABAergic Purkinje neurons in the cerebellum, which likely contributes to ataxia, and in the reticular nucleus of the thalamus and the suprachiasmatic nucleus of the hypothalamus, which likely contribute to circadian rhythm disturbances and sleep disorder. The imbalance between excitatory and inhibitory transmission can be partially corrected by compensatory loss-of-function mutations of NaV1.6 channels, and thermally induced seizures in these mice can be prevented by drug combinations that enhance GABAergic neurotransmission. Familial Febrile Seizures are also caused by mild loss-of-function mutations in NaV1.1 channels. We have proposed a unified loss-of-function hypothesis for the spectrum of epilepsy syndromes caused by genetic changes in NaV1.1 channels: mild impairment predisposes to febrile seizures, intermediate impairment leads to GEFS+ epilepsy, and severe loss of function causes the intractable seizures and co-morbidities of SMEI. Surprisingly, mutations in other sodium channels that cause epilepsy are rare, but Benign Neonatal Infantile Seizures is caused by mutations in NaV1.2 channels, and mutations in those channels can also lead to more severe epilepsy syndromes. Understanding the molecular and cellular mechanisms that underlie these genetic epilepsies is yielding much information about non-genetic epilepsy syndromes as well.

PubMed Disclaimer

Similar articles

References

    1. Catterall WA. From ionic currents to molecular mechanisms: The structure and function of voltage-gated sodium channels. Neuron. 2000;26:13–25. - PubMed
    1. Isom LL. The role of sodium channels in cell adhesion. Front Biosci. 2002;7:12–23. - PubMed
    1. Isom LL, Ragsdale DS, De Jongh KS, Westenbroek RE, Reber BFX, Scheuer T, Catterall WA. Structure and function of the beta-2 subunit of brain sodium channels, a transmembrane glycoprotein with a CAM-motif. Cell. 1995;83:433–442. - PubMed
    1. Goldin AL. Resurgence of sodium channel research. Annu Rev Physiol. 2001;63:871–894. - PubMed
    1. Goldin AL, Barchi RL, Caldwell JH, Hofmann F, Howe JR, Hunter JC, Kallen RG, Mandel G, Meisler MH, Berwald Netter Y, Noda M, Tamkun MM, Waxman SG, Wood JN, Catterall WA. Nomenclature of voltage-gated sodium channels. Neuron. 2000;28:365–368. - PubMed

LinkOut - more resources