Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 Nov 24;372(6504):366-9.
doi: 10.1038/372366a0.

Potassium channel block by cytoplasmic polyamines as the mechanism of intrinsic rectification

Affiliations

Potassium channel block by cytoplasmic polyamines as the mechanism of intrinsic rectification

A N Lopatin et al. Nature. .

Abstract

Inwardly rectifying potassium channels conduct ions more readily in the inward than the outward direction, an essential property for normal electrical activity. Although voltage-dependent block by internal magnesium ions may underlie inward rectification in some channels, an intrinsic voltage-dependent closure of the channel plays a contributory, or even exclusive, role in others. Here we report that, rather than being intrinsic to the channel protein, so-called intrinsic rectification of strong inward rectifiers requires soluble factors that are not Mg2+ and can be released from Xenopus oocytes and other cells. Biochemical and biophysical characterization identifies these factors as polyamines (spermine, spermidine, putrescine and cadaverine). The results suggest that intrinsic rectification results from voltage-dependent block of the channel pore by polyamines, not from a voltage sensor intrinsic to the channel protein.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources