The Wayback Machine - https://web.archive.org/web/20200715105628/https://github.com/topics/xception
Skip to content
#

xception

Here are 58 public repositories matching this topic...

shaibagon
shaibagon commented Jan 7, 2019

When training, the augmentation RandomScaleCrop may downscale the image and the target label image. It then pads the image and the label with [self.fill][1] which is ZERO.
This is in contrast to the "ignore value" of the loss [that is set to 255][2].
This way the loss treats the padded region as valid "class 0" pixels and compute loss for it.

self.fill of the augmentation functions

Practice on cifar100(ResNet, DenseNet, VGG, GoogleNet, InceptionV3, InceptionV4, Inception-ResNetv2, Xception, Resnet In Resnet, ResNext,ShuffleNet, ShuffleNetv2, MobileNet, MobileNetv2, SqueezeNet, NasNet, Residual Attention Network, SENet)
  • Updated Aug 27, 2019
  • Python

COVID-19 Detection Chest X-rays and CT scans: COVID-19 Detection based on Chest X-rays and CT Scans using four Transfer Learning algorithms: VGG16, ResNet50, InceptionV3, Xception. The models were trained for 500 epochs on around 1000 Chest X-rays and around 750 CT Scan images on Google Colab GPU. A Flask App was later developed wherein user can upload Chest X-rays or CT Scans and get the output of possibility of COVID infection.
  • Updated Jun 27, 2020
  • Jupyter Notebook

Improve this page

Add a description, image, and links to the xception topic page so that developers can more easily learn about it.

Curate this topic

Add this topic to your repo

To associate your repository with the xception topic, visit your repo's landing page and select "manage topics."

Learn more

You can’t perform that action at this time.