The Wayback Machine - https://web.archive.org/web/20201113051436/https://github.com/pigtamer/uav_py_feature
Skip to content
master
Go to file
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
 
 
ml
 
 
orb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

readme.md

References

HoG

  1. This is an Opencv Example with the func to visualize hog structure.

  2. CLI Example

  3. A Opencv HoG trainer on GitHub

  4. Parameters Example on StackOverflow. Caution: we MUST adjust it according to our patch size and other shits.

  5. HoG theory basis on learnopencv.com

  6. Forum

HoG 3D

HoG 3d feature is implemented by myself. Referencing to:

  1. A Spatio-Temporal Descriptor Based on 3D-Gradients

  2. Behavior recognition via sparse spatio-temporal features

Regex

  1. Python module "re" Documentation

  2. Remember separators for EPFL UAV dataset:

    sepa_loc = r"\(((\d*),(.))*(\d*)\)"
    ...
    searchObj = re.search(sepa_loc, line, re.M|re.I|re.S)

XGBoost

Git Demo Repo for Py

  1. Example for custom obj func

  2. Xgboost python API Manual

  3. Xgboost python usage introduction

Trifles on python

Other things

Can try scikit module: sklearn.ensemble.GradientBoostingClassifier() as an alternative.

Releases

No releases published

Packages

No packages published

Languages

You can’t perform that action at this time.