-
Updated
Sep 8, 2020 - C++
cntk
Here are 116 public repositories matching this topic...
-
Updated
Aug 29, 2020 - Python
-
Updated
Oct 22, 2020 - Python
-
Updated
Nov 12, 2020 - TypeScript
-
Updated
Mar 15, 2019 - Jupyter Notebook
-
Updated
Jun 26, 2018 - Python
-
Updated
May 20, 2020 - Python
-
Updated
Feb 22, 2020 - Python
-
Updated
Jul 25, 2019 - Jupyter Notebook
-
Updated
Nov 10, 2020 - Rich Text Format
-
Updated
Jan 28, 2019 - C#
-
Updated
Apr 30, 2019 - Python
-
Updated
Jul 8, 2017 - Jupyter Notebook
-
Updated
Sep 8, 2019 - Dockerfile
-
Updated
Nov 16, 2020 - C++
-
Updated
Mar 7, 2017 - Python
-
Updated
Feb 15, 2018 - Python
-
Updated
Nov 18, 2020 - Python
-
Updated
Feb 5, 2018 - Python
-
Updated
Oct 8, 2018 - Jupyter Notebook
-
Updated
May 16, 2018 - Elixir
-
Updated
Jun 27, 2018 - C#
-
Updated
Dec 13, 2017 - Jupyter Notebook
-
Updated
Aug 23, 2018 - Dockerfile
-
Updated
Jul 4, 2017 - Python
-
Updated
Sep 13, 2020 - Python
-
Updated
Jul 5, 2019 - Python
Improve this page
Add a description, image, and links to the cntk topic page so that developers can more easily learn about it.
Add this topic to your repo
To associate your repository with the cntk topic, visit your repo's landing page and select "manage topics."


I have a simple regression task (using a LightGBMRegressor) where I want to penalize negative predictions more than positive ones. Is there a way to achieve this with the default regression LightGBM objectives (see https://lightgbm.readthedocs.io/en/latest/Parameters.html)? If not, is it somehow possible to define (many example for default LightGBM model) and pass a custom regression objective?