Nature Genetics Nature Genetics is the primary research journal for the genetics community. With a reputation for quality global coverage, Nature Genetics delivers the latest research across the field, including human genetics and genomics, genomics in plant and animal breeding, epigenetics, cancer and genetic technology. With News and Views, Analysis, Perspectives, Letters, Articles and Technical Reports, Nature Genetics is consistently the most frequently cited primary research journal in the field of Genetics and Heredity. http://feeds.nature.com/ng/rss/current Nature Publishing Group en © 2025 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. Nature Genetics © 2025 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. [email protected]
  • Nature Genetics https://www.nature.com/uploads/product/ng/rss.png http://feeds.nature.com/ng/rss/current https://www.nature.com/articles/s41588-025-02252-9 Nature Genetics, Published online: 06 August 2025; doi:10.1038/s41588-025-02252-9This Perspective proposes a human rights-based governance framework for cross-border genomic data sharing, addressing limitations of data sovereignty approaches while balancing privacy, security and global research collaboration.]]> Liang YuRuohan FengYouhai SunYaojin Peng doi:10.1038/s41588-025-02252-9 Nature Genetics, Published online: 2025-08-06; | doi:10.1038/s41588-025-02252-9 2025-08-06 Nature Genetics 10.1038/s41588-025-02252-9 https://www.nature.com/articles/s41588-025-02252-9 https://www.nature.com/articles/s41588-025-02288-x Nature Genetics, Published online: 06 August 2025; doi:10.1038/s41588-025-02288-xNoncoding rare variant analyses using whole-genome sequencing data from the UK Biobank identify gene–trait associations for 42 blood cell traits but find that most signals are driven by linkage disequilibrium between common and rare variants.]]> Diogo M. RibeiroRobin J. HofmeisterSimone RubinacciOlivier Delaneau doi:10.1038/s41588-025-02288-x Nature Genetics, Published online: 2025-08-06; | doi:10.1038/s41588-025-02288-x 2025-08-06 Nature Genetics 10.1038/s41588-025-02288-x https://www.nature.com/articles/s41588-025-02288-x https://www.nature.com/articles/s41588-025-02284-1 Nature Genetics, Published online: 06 August 2025; doi:10.1038/s41588-025-02284-1CRISPR activation of 1,836 human transcription factors recapitulates fibroblast transcriptional states observed in vivo and identifies regulators that can revert inflammatory states.]]> Kaden M. SouthardRico C. ArdyAnran TangDeirdre D. O’SullivanEli MetznerKarthik GuruvayurappanThomas M. Norman doi:10.1038/s41588-025-02284-1 Nature Genetics, Published online: 2025-08-06; | doi:10.1038/s41588-025-02284-1 2025-08-06 Nature Genetics 10.1038/s41588-025-02284-1 https://www.nature.com/articles/s41588-025-02284-1 https://www.nature.com/articles/s41588-025-02273-4 Nature Genetics, Published online: 06 August 2025; doi:10.1038/s41588-025-02273-4Haplotype-resolved, gap-free genome assemblies for a representative Asian pear (Pyrus bretschneideri, ‘Dangshansuli’) and a European pear (Pyrus communis, ‘Max Red Bartlett’) provide insights into genome evolution and interspecies variation in Pyrus species.]]> Manyi SunBeibei CaoKui LiJiaming LiJun LiuCheng XueKaidi GuShaozhuo XuYuanjun LiQingyu LiMeina QuMingyue ZhangRunze WangYueyuan LiuChenjie YaoHang HeJun Wu doi:10.1038/s41588-025-02273-4 Nature Genetics, Published online: 2025-08-06; | doi:10.1038/s41588-025-02273-4 2025-08-06 Nature Genetics 10.1038/s41588-025-02273-4 https://www.nature.com/articles/s41588-025-02273-4 https://www.nature.com/articles/s41588-025-02320-0 Nature Genetics, Published online: 05 August 2025; doi:10.1038/s41588-025-02320-0Author Correction: Clonal evolution during metastatic spread in high-risk neuroblastoma]]> Gunes GundemMax F. LevineStephen S. RobertsIrene Y. CheungJuan S. Medina-MartínezYi FengJuan E. Arango-OssaLoic ChadoutaudMathieu RitaGeorgios AsimomitisJoe ZhouDaoqi YouNancy BouvierBarbara SpitzerDavid B. SolitFilemon Dela CruzMichael P. LaQuagliaBrian H. KushnerShakeel ModakNeerav ShuklaChristine A. Iacobuzio-DonahueAndrew L. KungNai-Kong V. CheungElli Papaemmanuil doi:10.1038/s41588-025-02320-0 Nature Genetics, Published online: 2025-08-05; | doi:10.1038/s41588-025-02320-0 2025-08-05 Nature Genetics 10.1038/s41588-025-02320-0 https://www.nature.com/articles/s41588-025-02320-0 https://www.nature.com/articles/s41588-025-02249-4 Nature Genetics, Published online: 05 August 2025; doi:10.1038/s41588-025-02249-4Integration of snATAC-seq and snRNA-seq data from brains of individuals with major depressive disorder identifies chromatin accessibility alterations and functional enrichment of risk variants in deep-layer excitatory neurons. Gray matter microglia in these individuals show decreased accessibility at sites bound by regulators of immune homeostasis.]]> Anjali ChawlaDoruk CakmakciLaura M. FioriWenmin ZangMalosree MaitraJennie YangDariusz Å»urawekGabriella FrosiReza RahimianHaruka MitsuhashiMaria Antonietta DavoliRyan DennistonGary Gang ChenVolodymyr YerkoDeborah MashKiran GirdharSchahram AkbarianNaguib MechawarMatthew SudermanYue LiCorina NagyGustavo Turecki doi:10.1038/s41588-025-02249-4 Nature Genetics, Published online: 2025-08-05; | doi:10.1038/s41588-025-02249-4 2025-08-05 Nature Genetics 10.1038/s41588-025-02249-4 https://www.nature.com/articles/s41588-025-02249-4 SBRR1-R variant regulates sheath blight resistance in rice]]> https://www.nature.com/articles/s41588-025-02282-3 Nature Genetics, Published online: 04 August 2025; doi:10.1038/s41588-025-02282-3Rice sheath blight is a major fungal disease caused by the necrotrophic pathogen Rhizoctonia solani. We identified a natural SBRR1-R allele that is activated by the bHLH57 transcription factor, leading to increased expression of chitinase antifungal protein genes that confer resistance to sheath blight.]]> SBRR1-R variant regulates sheath blight resistance in rice]]> doi:10.1038/s41588-025-02282-3 Nature Genetics, Published online: 2025-08-04; | doi:10.1038/s41588-025-02282-3 2025-08-04 Nature Genetics 10.1038/s41588-025-02282-3 https://www.nature.com/articles/s41588-025-02282-3 https://www.nature.com/articles/s41588-025-02269-0 Nature Genetics, Published online: 04 August 2025; doi:10.1038/s41588-025-02269-0Multivariate genome-wide association analyses of the latent genetic architecture of frailty identify one general factor of genetic overlap across all frailty deficits and six factors indexing a shared genetic signal across specific groups of deficits.]]> Isabelle F. FooteJonny P. FlintAnna E. FürtjesJeremy M. LawrenceDonncha S. MullinJohn D. FiskTobias K. KarakachAndrew RutenbergNicholas G. MartinMichelle K. LuptonDavid J. LlewellynJanice M. RansonSimon R. CoxMichelle LucianoKenneth RockwoodAndrew D. Grotzinger doi:10.1038/s41588-025-02269-0 Nature Genetics, Published online: 2025-08-04; | doi:10.1038/s41588-025-02269-0 2025-08-04 Nature Genetics 10.1038/s41588-025-02269-0 https://www.nature.com/articles/s41588-025-02269-0