Skip to main content
Epidemiology and Infection logoLink to Epidemiology and Infection
. 1996 Feb;116(1):65–70. doi: 10.1017/s0950268800058969

Measles immunity and response to revaccination among secondary school children in Cumbria.

N Calvert 1, F Cutts 1, R Irving 1, D Brown 1, J Marsh 1, E Miller 1
PMCID: PMC2271248  PMID: 8626005

Abstract

The prevalence of antibody to measles virus in 759 children aged 11-18 years attending a secondary school in Cumbria was measured using a salivary IgG antibody capture assay. Serum IgG antibody levels were measured using a plaque reduction neutralization assay in subjects whose saliva was antibody negative. Vaccination histories were obtained from the child health computer and general practice record. A total of 662 pupils (87% of those tested) had detectable measles-specific IgG in saliva. Of the remaining 97, 82 provided blood samples and 29 had serum neutralizing antibody levels above 200 mIU/ml. Afer adjusting for non-participation rates, the proportion considered non-immune (no IgG in saliva and < or = 200 mIU/ml in serum) was 9% overall, ranging from 6% in vaccinated children to 20% in unvaccinated children. Measles-mumps-rubella vaccine was given to 50 children of whom 38 provided post-vaccination serum and 32 saliva samples. Thirty (79%) had a fourfold or greater rise in serum neutralizing antibody and 28 (88%) developed IgG antibody in saliva. Half of the children considered non-immune by antibody testing would have been overlooked in a selective vaccination programme targeted at those without a history of prior vaccination. A programme targeted at all school children should substantially reduce the proportion non-immune since a primary or booster response was achieved in three quarters of previously vaccinated children with low antibody levels and in all unvaccinated children. While it is feasible to screen a school-sized population for immunity to measles relatively quickly using a salivary IgG assay, a simple inexpensive field assay would need to be developed before salivary screening and selective vaccination could substitute for universal vaccination of populations at risk of measles outbreaks. The salivary IgG assay provided a sensitive measure of a booster response to vaccination.

Full text

PDF
65

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albrecht P., Herrmann K., Burns G. R. Role of virus strain in conventional and enhanced measles plaque neutralization test. J Virol Methods. 1981 Dec;3(5):251–260. doi: 10.1016/0166-0934(81)90062-8. [DOI] [PubMed] [Google Scholar]
  2. Babad H. R., Nokes D. J., Gay N. J., Miller E., Morgan-Capner P., Anderson R. M. Predicting the impact of measles vaccination in England and Wales: model validation and analysis of policy options. Epidemiol Infect. 1995 Apr;114(2):319–344. doi: 10.1017/s0950268800057976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brown D. W., Ramsay M. E., Richards A. F., Miller E. Salivary diagnosis of measles: a study of notified cases in the United Kingdom, 1991-3. BMJ. 1994 Apr 16;308(6935):1015–1017. doi: 10.1136/bmj.308.6935.1015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brown D., Miller E. Facing the measles epidemic. Practitioner. 1994 Nov;238(1544):778–781. [PubMed] [Google Scholar]
  5. Carter H., Gorman D. Measles, mumps, and rubella vaccine: time for a two stage policy? BMJ. 1992 Mar 7;304(6827):637–637. doi: 10.1136/bmj.304.6827.637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chen R. T., Markowitz L. E., Albrecht P., Stewart J. A., Mofenson L. M., Preblud S. R., Orenstein W. A. Measles antibody: reevaluation of protective titers. J Infect Dis. 1990 Nov;162(5):1036–1042. doi: 10.1093/infdis/162.5.1036. [DOI] [PubMed] [Google Scholar]
  7. Christenson B., Böttiger M. Measles antibody: comparison of long-term vaccination titres, early vaccination titres and naturally acquired immunity to and booster effects on the measles virus. Vaccine. 1994 Feb;12(2):129–133. doi: 10.1016/0264-410x(94)90049-3. [DOI] [PubMed] [Google Scholar]
  8. Cohn M. L., Robinson E. D., Faerber M., Thomas D., Geyer S., Peters S., Martin M., Martin A., Sobel D., Jones R. Measles vaccine failures: lack of sustained measles-specific immunoglobulin G responses in revaccinated adolescents and young adults. Pediatr Infect Dis J. 1994 Jan;13(1):34–38. [PubMed] [Google Scholar]
  9. Cutts F. T., Bartoloni A., Guglielmetti P., Gil F., Brown D., Bianchi Bandinelli M. L., Roselli M. Prevalence of measles antibody among children under 15 years of age in Santa Cruz, Bolivia: implications for vaccination strategies. Trans R Soc Trop Med Hyg. 1995 Jan-Feb;89(1):119–122. doi: 10.1016/0035-9203(95)90683-5. [DOI] [PubMed] [Google Scholar]
  10. Forsey T., Heath A. B., Minor P. D. The 1st International Standard for anti-measles serum. Biologicals. 1991 Jul;19(3):237–241. doi: 10.1016/1045-1056(91)90042-i. [DOI] [PubMed] [Google Scholar]
  11. Gay N. J., Hesketh L. M., Morgan-Capner P., Miller E. Interpretation of serological surveillance data for measles using mathematical models: implications for vaccine strategy. Epidemiol Infect. 1995 Aug;115(1):139–156. doi: 10.1017/s0950268800058209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hill A. Measles, mumps, and rubella vaccination. BMJ. 1992 Mar 21;304(6829):779–779. doi: 10.1136/bmj.304.6829.779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lyons R. A., Jones H. I., Salmon R. L. Successful control of a school based measles outbreak by immunization. Epidemiol Infect. 1994 Oct;113(2):367–375. doi: 10.1017/s0950268800051797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Markowitz L. E., Albrecht P., Orenstein W. A., Lett S. M., Pugliese T. J., Farrell D. Persistence of measles antibody after revaccination. J Infect Dis. 1992 Jul;166(1):205–208. doi: 10.1093/infdis/166.1.205. [DOI] [PubMed] [Google Scholar]
  15. Morse D., O'Shea M., Hamilton G., Soltanpoor N., Leece G., Miller E., Brown D. Outbreak of measles in a teenage school population: the need to immunize susceptible adolescents. Epidemiol Infect. 1994 Oct;113(2):355–365. doi: 10.1017/s0950268800051785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Pedersen I. R., Mordhorst C. H., Glikmann G., von Magnus H. Subclinical measles infection in vaccinated seropositive individuals in arctic Greenland. Vaccine. 1989 Aug;7(4):345–348. doi: 10.1016/0264-410x(89)90199-0. [DOI] [PubMed] [Google Scholar]
  17. Perry K. R., Brown D. W., Parry J. V., Panday S., Pipkin C., Richards A. Detection of measles, mumps, and rubella antibodies in saliva using antibody capture radioimmunoassay. J Med Virol. 1993 Jul;40(3):235–240. doi: 10.1002/jmv.1890400312. [DOI] [PubMed] [Google Scholar]
  18. Ramsay M., Gay N., Miller E., Rush M., White J., Morgan-Capner P., Brown D. The epidemiology of measles in England and Wales: rationale for the 1994 national vaccination campaign. Commun Dis Rep CDR Rev. 1994 Nov 11;4(12):R141–R146. [PubMed] [Google Scholar]
  19. Samb B., Aaby P., Whittle H. C., Seck A. M., Rahman S., Bennett J., Markowitz L., Simondon F. Serologic status and measles attack rates among vaccinated and unvaccinated children in rural Senegal. Pediatr Infect Dis J. 1995 Mar;14(3):203–209. doi: 10.1097/00006454-199503000-00007. [DOI] [PubMed] [Google Scholar]
  20. Sinitsyna O. A., Khudaverdyan O. E., Steinberg L. L., Nagieva F. G., Lotte V. D., Dorofeeva L. V., Rozina E. E., Boriskin YuS Further-attenuated measles vaccine: virus passages affect viral surface protein expression, immunogenicity and histopathology pattern in vivo. Res Virol. 1990 Sep-Oct;141(5):517–531. doi: 10.1016/0923-2516(90)90084-v. [DOI] [PubMed] [Google Scholar]
  21. Thieme T., Piacentini S., Davidson S., Steingart K. Determination of measles, mumps, and rubella immunization status using oral fluid samples. JAMA. 1994 Jul 20;272(3):219–221. [PubMed] [Google Scholar]

Articles from Epidemiology and Infection are provided here courtesy of Cambridge University Press

RESOURCES