Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Oct;3(5):369-76.
doi: 10.1054/jpai.2002.126610.

Sympathetic-independent bradykinin mechanical hyperalgesia induced by subdiaphragmatic vagotomy in the rat

Affiliations

Sympathetic-independent bradykinin mechanical hyperalgesia induced by subdiaphragmatic vagotomy in the rat

Sachia G Khasar et al. J Pain. 2002 Oct.

Abstract

Bradykinin-induced mechanical hyperalgesia is sympathetically dependent and B(2)-type bradykinin receptor-mediated in the rat; however, a sympathetically independent component of bradykinin hyperalgesia is shown after subdiaphragmatic vagotomy. We evaluated the mechanism of this bradykinin-induced sympathetic-independent mechanical hyperalgesia. The dose-response curve for bradykinin mechanical hyperalgesia in sympathectomized plus vagotomized rats was similar in magnitude to that for sympathetically dependent bradykinin hyperalgesia in normal rats. Although bradykinin mechanical hyperalgesia was mediated by the B(2)-type bradykinin receptors after sympathectomy plus vagotomy, it had a much more rapid latency to onset. This hyperalgesia was significantly attenuated by inhibition of protein kinase A but not protein kinase C, similar to the hyperalgesia produced by prostaglandin E(2), an agent that directly sensitizes primary afferent nociceptors. However, unlike prostaglandin E(2)-induced mechanical hyperalgesia in normal rats, after sympathectomy plus vagotomy, bradykinin-induced hyperalgesia was not attenuated by inhibition of nitric oxide synthesis. Peripheral administration of a mu opioid agonist, [D-Ala(2),N-Me-Phe(4),Gly(5)-ol]-enkephalin, significantly attenuated bradykinin mechanical hyperalgesia after sympathectomy plus vagotomy. These data suggest that after sympathectomy plus subdiaphragmatic vagotomy, bradykinin acts directly on primary afferents to produce mechanical hyperalgesia via a novel protein kinase A-dependent signaling mechanism.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources