Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 May;9(5):463-72.
doi: 10.1016/j.jpain.2008.01.335. Epub 2008 Mar 24.

Oxaliplatin acts on IB4-positive nociceptors to induce an oxidative stress-dependent acute painful peripheral neuropathy

Affiliations
Free article

Oxaliplatin acts on IB4-positive nociceptors to induce an oxidative stress-dependent acute painful peripheral neuropathy

Elizabeth K Joseph et al. J Pain. 2008 May.
Free article

Abstract

The toxicity profile of oxaliplatin, a platinum derivative currently used in the treatment of colorectal cancer, differs from those of the other platinum compounds, cisplatin and carboplatin. Oxaliplatin treatment induces an acute neurotoxicity characterized by a rapid onset of cold-induced distal dysesthesia and a chronic sensory peripheral neuropathy. A single intravenous dose of oxaliplatin produced a dose-dependent mechanical hyperalgesia and heat and cold allodynia; repeated administration intensified symptoms. A single intradermal dose of oxaliplatin produced a dose-dependent mechanical hyperalgesia. A single dose intravenous oxaliplatin also lowered thresholds and increased responses of C-fiber nociceptors to mechanical stimulation, confirming a peripheral site of action. Whereas peripheral administration of inhibitors of second messengers implicated in models of other painful peripheral neuropathies (PKA, PKC, NO, Ca(2+), and caspase) had no effect; both systemic and local administration of antioxidants (acetyl-L-carnitine, alpha-lipoic acid or vitamin C), all markedly inhibited oxaliplatin-induced hyperalgesia. Intrathecal administration of the neurotoxin for IB4-positive nociceptors, IB4-saporin, markedly attenuated IB4 staining in the dorsal horn of the spinal cord and completely prevented oxaliplatin-induced hyperalgesia. We suggest that oxaliplatin acts on IB4 (+)-nociceptors to induce oxidative stress-dependent acute peripheral sensory neuropathy.

Perspective: Many drugs used to treat cancer produce pain as their dose-limiting side effect. We used a model of this pain syndrome induced by oxaliplatin to demonstrate that pain is produced by action on a subset of nociceptors, the IB4-positive DRG neurons. This information could help define cellular targets against which protective therapies could be developed.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources