Repeated Mu-Opioid Exposure Induces a Novel Form of the Hyperalgesic Priming Model for Transition to Chronic Pain
- PMID: 26354917
- PMCID: PMC4563038
- DOI: 10.1523/JNEUROSCI.1673-15.2015
Repeated Mu-Opioid Exposure Induces a Novel Form of the Hyperalgesic Priming Model for Transition to Chronic Pain
Abstract
The primary afferent nociceptor was used as a model system to study mechanisms of pain induced by chronic opioid administration. Repeated intradermal injection of the selective mu-opioid receptor (MOR) agonist DAMGO induced mechanical hyperalgesia and marked prolongation of prostaglandin E2 (PGE2) hyperalgesia, a key feature of hyperalgesic priming. However, in contrast to prior studies of priming induced by receptor-mediated (i.e., TNFα, NGF, or IL-6 receptor) or direct activation of protein kinase Cε (PKCε), the pronociceptive effects of PGE2 in DAMGO-treated rats demonstrated the following: (1) rapid induction (4 h compared with 3 d); (2) protein kinase A (PKA), rather than PKCε, dependence; (3) prolongation of hyperalgesia induced by an activator of PKA, 8-bromo cAMP; (4) failure to be reversed by a protein translation inhibitor; (5) priming in females as well as in males; and (6) lack of dependence on the isolectin B4-positive nociceptor. These studies demonstrate a novel form of hyperalgesic priming induced by repeated administration of an agonist at the Gi-protein-coupled MOR to the peripheral terminal of the nociceptor. Significance statement: The current study demonstrates the molecular mechanisms involved in the sensitization of nociceptors produced by repeated activation of mu-opioid receptors and contributes to our understanding of the painful condition observed in patients submitted to chronic use of opioids.
Keywords: chronic pain; hyperalgesia; hyperalgesic priming; mu-opioid receptor; β/γ subunit.
Copyright © 2015 the authors 0270-6474/15/3512502-16$15.00/0.
Figures













Similar articles
-
Adenosine-A1 receptor agonist induced hyperalgesic priming type II.Pain. 2016 Mar;157(3):698-709. doi: 10.1097/j.pain.0000000000000421. Pain. 2016. PMID: 26588695 Free PMC article.
-
Role of GPCR (mu-opioid)-receptor tyrosine kinase (epidermal growth factor) crosstalk in opioid-induced hyperalgesic priming (type II).Pain. 2018 May;159(5):864-875. doi: 10.1097/j.pain.0000000000001155. Pain. 2018. PMID: 29447132 Free PMC article.
-
Opioid-Induced Hyperalgesic Priming in Single Nociceptors.J Neurosci. 2021 Jan 6;41(1):31-46. doi: 10.1523/JNEUROSCI.2160-20.2020. Epub 2020 Nov 17. J Neurosci. 2021. PMID: 33203743 Free PMC article.
-
Roles of Proton-Sensing Receptors in the Transition from Acute to Chronic Pain.J Dent Res. 2016 Feb;95(2):135-42. doi: 10.1177/0022034515618382. Epub 2015 Nov 23. J Dent Res. 2016. PMID: 26597969 Review.
-
Opioid-induced redistribution of 6TM and 7TM μ opioid receptors: A hypothesized mechanistic facilitator model of opioid-induced hyperalgesia.Pharmacol Rep. 2016 Aug;68(4):686-91. doi: 10.1016/j.pharep.2016.03.003. Epub 2016 Mar 19. Pharmacol Rep. 2016. PMID: 27116700 Review.
Cited by
-
In Vitro Nociceptor Neuroplasticity Associated with In Vivo Opioid-Induced Hyperalgesia.J Neurosci. 2019 Sep 4;39(36):7061-7073. doi: 10.1523/JNEUROSCI.1191-19.2019. Epub 2019 Jul 12. J Neurosci. 2019. PMID: 31300521 Free PMC article.
-
Fentanyl Induces Rapid Onset Hyperalgesic Priming: Type I at Peripheral and Type II at Central Nociceptor Terminals.J Neurosci. 2018 Feb 28;38(9):2226-2245. doi: 10.1523/JNEUROSCI.3476-17.2018. Epub 2018 Feb 5. J Neurosci. 2018. PMID: 29431655 Free PMC article.
-
A Role for Transmembrane Protein 16C/Slack Impairment in Excitatory Nociceptive Synaptic Plasticity in the Pathogenesis of Remifentanil-induced Hyperalgesia in Rats.Neurosci Bull. 2021 May;37(5):669-683. doi: 10.1007/s12264-021-00652-5. Epub 2021 Mar 29. Neurosci Bull. 2021. PMID: 33779892 Free PMC article.
-
Nalmefene vs. dexmedetomidine for prevention of postoperative hyperalgesia in patients undergoing laparoscopic gynecological surgery with remifentanil infusion: A randomized double-blind controlled trial.Front Pharmacol. 2023 Jan 25;14:1131812. doi: 10.3389/fphar.2023.1131812. eCollection 2023. Front Pharmacol. 2023. PMID: 36762101 Free PMC article.
-
Inhibitory Gi/O-coupled receptors in somatosensory neurons: Potential therapeutic targets for novel analgesics.Mol Pain. 2018 Jan-Dec;14:1744806918763646. doi: 10.1177/1744806918763646. Mol Pain. 2018. PMID: 29580154 Free PMC article. Review.
References
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Research Materials