Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Oct 24:11:65.
doi: 10.1186/s12990-015-0068-4.

Contribution of Piezo2 to endothelium-dependent pain

Affiliations

Contribution of Piezo2 to endothelium-dependent pain

Luiz F Ferrari et al. Mol Pain. .

Abstract

Background: We evaluated the role of a mechanically-gated ion channel, Piezo2, in mechanical stimulation-induced enhancement of hyperalgesia produced by the pronociceptive vasoactive mediator endothelin-1, an innocuous mechanical stimulus-induced enhancement of hyperalgesia that is vascular endothelial cell dependent. We also evaluated its role in a preclinical model of a vascular endothelial cell dependent painful peripheral neuropathy.

Results: The local administration of oligodeoxynucleotides antisense to Piezo2 mRNA, at the site of nociceptive testing in the rat's hind paw, but not intrathecally at the central terminal of the nociceptor, prevented innocuous stimulus-induced enhancement of hyperalgesia produced by endothelin-1 (100 ng). The mechanical hyperalgesia induced by oxaliplatin (2 mg/kg. i.v.), which was inhibited by impairing endothelial cell function, was similarly attenuated by local injection of the Piezo2 antisense. Polymerase chain reaction analysis demonstrated for the first time the presence of Piezo2 mRNA in endothelial cells.

Conclusions: These results support the hypothesis that Piezo2 is a mechano-transducer in the endothelial cell where it contributes to stimulus-dependent hyperalgesia, and a model of chemotherapy-induced painful peripheral neuropathy.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Role of Piezo2 in peripheral tissue in innocuous stimulus-induced enhancement of the mechanical hyperalgesia induced by endothelin-1. Rats received an intradermal injection of a combination of 3 sequences of ODN mismatch (MM, open symbols) or antisense (AS, dark symbols) against Piezo2 mRNA (20 μg of each sequence/μl, added to 2 μl of oligofectamine; total volume: 5 μl) on the dorsum of the hind paw. 6 h later, endothelin-1 (100 ng) was injected at the same site. At the same site, the paws then were submitted to 4 mechanical stimuli, 5 min apart from each other, starting 15 min after endothelin-1 injection. In the paws pretreated with local injection of ODN AS, compared to ODN MM, the decrease in the nociceptive threshold subsequent to the mechanical stimulations was significantly attenuated, indicating a role of peripheral Piezo2 channels in stimulus-dependent hyperalgesia. (F1,10 = 140.7; **p < 0.0061 and ****p < 0.0001, when the groups are compared at each reading, two-way repeated measures ANOVA followed by Bonferroni’s post hoc test; N = 6 paws per group). a Shows the mechanical nociceptive threshold, in grams, after each stimulation, starting 15 min post-endothelin-1 injection; in b, the reduction in the mechanical threshold after each stimulation, when compared to the baseline, is represented as percentage change
Fig. 2
Fig. 2
Piezo2 in sensory neurons innervating the skin do not play a role in endothelin-1-induced stimulus-dependent hyperalgesia. Rats were treated for 3 consecutive days with intrathecal injection of the combination of 3 sequences of ODN antisense (AS, dark symbols) or mismatch (MM, open symbols) against Piezo2 mRNA. On the 4th day, endothelin-1 (100 ng) was injected on the dorsum of the hind paw. Four mechanical stimuli, 5 min apart from each other, were performed, starting 15 min after endothelin-1 injection. No difference was observed between the groups in the decrease in the nociceptive threshold subsequent to the mechanical stimuli, indicating that Piezo2 channels in the DRG neurons are not involved in stimulus-dependent hyperalgesia induced by endothelin-1. (p = 0.9895, non-significant, when the groups are compared, two-way repeated measures ANOVA followed by Bonferroni’s post hoc test; N = 6 paws per group)
Fig. 3
Fig. 3
Role of the vascular endothelium and Piezo2 in peripheral tissue in oxaliplatin-induced neuropathic pain. a Rats that had been treated with a single intravenous injection of oxaliplatin (2 mg/kg) received, 48 h later, octoxynol-9 (0.5 % solution, injected intravenously; gray bar). The mechanical nociceptive thresholds were evaluated, by the Randall-Sellitto paw withdrawal test, 30 min after octoxynol-9 injection. We observed significant attenuation of the mechanical hyperalgesia induced by oxaliplatin in rats treated with octoxynol-9 when compared to a control group (white bar) (t 10 = 6.923; ****p < 0.0001, when both groups are compared, Student’s t test), indicating a role of the endothelium in this model of chemotherapy-induced neuropathic pain (N = 6 paws per group); b rats received intravenous injection of oxaliplatin (2 mg/kg). 24 h later, the combination of 3 sequences of ODN mismatch (MM, white bar) or antisense (AS, black bar) against Piezo2 mRNA (20 μg of each sequence/μl, added to 2 μl of oligofectamine; total volume: 5 μl) was injected on the dorsum of the hind paw. 6 h later, the paws were submitted to 4 mechanical stimuli, 5 min apart from each other. We observed that in the paws treated with local injection of ODN AS, but not of ODN MM, the decrease in the nociceptive threshold subsequent to the mechanical stimuli was significantly attenuated, indicating a role of peripheral Piezo2 channels in oxaliplatin-induced hyperalgesia. (t 10 = 12.38; ****p < 0.0001, when both groups are compared, Student’s t test; N = 6 paws per group)
Fig. 4
Fig. 4
Expression of Piezo2 mRNA in endothelial cells. PCR analysis of Piezo2 mRNA was performed in extracts obtained from cultured rat aortic endothelial cells (RAOEC). cDNA from RAOEC was used to analyze whether endothelial cells express Piezo2. The size of the Piezo2 amplification product is 278 bp. M DNA—ladder; 1 30 cycles, 2 35 cycles; 3 40 cycles
Fig. 5
Fig. 5
Schematic of vascular endothelial cell/Piezo2-dependent mechanism of innocuous stimulus induced enhancement of endothelin-1 hyperalgesia. Endothelin-1 activates ET receptors in the nociceptor terminal, sensitizing it to mechanical stimuli (hyperalgesia), detected as increased response to a noxious stimulus. The activation of ET receptors also sensitizes the endothelial cell to innocuous mechanical stimulation, inducing the release of ATP, which, in turn, act at P2X2/3 receptors on the nociceptor, producing enhancement of the endothelin-1-induced hyperalgesia (stimulus-dependent hyperalgesia). The insert represents the mechanical hyperalgesia induced by endothelin-1, acting on the nociceptor (darker gray box), and the increase in its magnitude after each stimulation (open arrows), due to a mechanism triggered by endothelin-1 at the endothelial cell (lighter gray box) involving Piezo2—which detects the innocuous mechanical stimulus—and the release of ATP

Similar articles

Cited by

References

    1. Joseph EK, Gear RW, Levine JD. Mechanical stimulation enhances endothelin-1 hyperalgesia. Neuroscience. 2011;178:189–195. doi: 10.1016/j.neuroscience.2011.01.043. - DOI - PMC - PubMed
    1. Joseph EK, Levine JD. Role of endothelial cells in antihyperalgesia induced by a triptan and β-blocker. Neuroscience. 2013;232:83–89. doi: 10.1016/j.neuroscience.2012.12.020. - DOI - PMC - PubMed
    1. Joseph EK, Green PG, Bogen O, Alvarez P, Levine JD. Vascular endothelial cells mediate mechanical stimulation-induced enhancement of endothelin hyperalgesia via activation of P2X2/3 receptors on nociceptors. J Neurosci. 2013;33:2849–2859. doi: 10.1523/JNEUROSCI.3229-12.2013. - DOI - PMC - PubMed
    1. Joseph EK, Green PG, Levine JD. ATP release mechanisms of endothelial cell-mediated stimulus-dependent hyperalgesia. J Pain. 2014;15:771–777. doi: 10.1016/j.jpain.2014.04.005. - DOI - PMC - PubMed
    1. Coste B, Mathur J, Schmidt M, et al. Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science. 2010;330:55–60. doi: 10.1126/science.1193270. - DOI - PMC - PubMed

Publication types

MeSH terms