Systemic Morphine Produces Dose-dependent Nociceptor-mediated Biphasic Changes in Nociceptive Threshold and Neuroplasticity
- PMID: 30529265
- PMCID: PMC9948647
- DOI: 10.1016/j.neuroscience.2018.11.051
Systemic Morphine Produces Dose-dependent Nociceptor-mediated Biphasic Changes in Nociceptive Threshold and Neuroplasticity
Abstract
We investigated the dose dependence of the role of nociceptors in opioid-induced side-effects, hyperalgesia and pain chronification, in the rat. Systemic morphine produced a dose-dependent biphasic change in mechanical nociceptive threshold. At lower doses (0.003-0.03 mg/kg, s.c.) morphine induced mechanical hyperalgesia, while higher doses (1-10 mg/kg, s.c.) induced analgesia. Intrathecal (i.t.) oligodeoxynucleotide (ODN) antisense to mu-opioid receptor (MOR) mRNA, attenuated both hyperalgesia and analgesia. 5 days after systemic morphine (0.03-10 mg/kg s.c.), mechanical hyperalgesia produced by intradermal (i.d.) prostaglandin E2 (PGE2) was prolonged, indicating hyperalgesic priming at the peripheral terminal of the nociceptor. The hyperalgesia induced by i.t. PGE2 (400 ng/10 µl), in groups that received 0.03 (that induced hyperalgesia) or 3 mg/kg (that induced analgesia) morphine, was also prolonged, indicating priming at the central terminal of the nociceptor. The prolongation of the hyperalgesia induced by i.d. or i.t. PGE2, in rats previously treated with either a hyperalgesic (0.03 mg/kg, s.c.) or analgesic (3 mg/kg, s.c.) dose, was reversed by i.d. or i.t. injection of the protein translation inhibitor cordycepin (1 µg), indicative of Type I priming at both terminals. Although pretreatment with MOR antisense had no effect on priming induced by 0.03 mg/kg morphine, it completely prevented priming by 3 mg/kg morphine, in both terminals. Thus, the induction of hyperalgesia, but not priming, by low-dose morphine, is MOR-dependent. In contrast, induction of both hyperalgesia and priming by high-dose morphine is MOR-dependent. The receptor at which low-dose morphine acts to produce priming remains to be established.
Keywords: hyperalgesic priming; morphine; mu-opioid receptor (MOR); nociceptor; opioid-induced hyperalgesia.
Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.
Conflict of interest statement
Conflict of interest: The authors declare no competing financial interests.
Figures






Similar articles
-
Opioid-Induced Hyperalgesic Priming in Single Nociceptors.J Neurosci. 2021 Jan 6;41(1):31-46. doi: 10.1523/JNEUROSCI.2160-20.2020. Epub 2020 Nov 17. J Neurosci. 2021. PMID: 33203743 Free PMC article.
-
Role of Nociceptor Toll-like Receptor 4 (TLR4) in Opioid-Induced Hyperalgesia and Hyperalgesic Priming.J Neurosci. 2019 Aug 14;39(33):6414-6424. doi: 10.1523/JNEUROSCI.0966-19.2019. Epub 2019 Jun 17. J Neurosci. 2019. PMID: 31209174 Free PMC article.
-
Mu-opioid Receptor (MOR) Biased Agonists Induce Biphasic Dose-dependent Hyperalgesia and Analgesia, and Hyperalgesic Priming in the Rat.Neuroscience. 2018 Dec 1;394:60-71. doi: 10.1016/j.neuroscience.2018.10.015. Epub 2018 Oct 17. Neuroscience. 2018. PMID: 30342200 Free PMC article.
-
The pharmacology of nociceptor priming.Handb Exp Pharmacol. 2015;227:15-37. doi: 10.1007/978-3-662-46450-2_2. Handb Exp Pharmacol. 2015. PMID: 25846612 Free PMC article. Review.
-
The mechanism of μ-opioid receptor (MOR)-TRPV1 crosstalk in TRPV1 activation involves morphine anti-nociception, tolerance and dependence.Channels (Austin). 2015;9(5):235-43. doi: 10.1080/19336950.2015.1069450. Epub 2015 Jul 15. Channels (Austin). 2015. PMID: 26176938 Free PMC article. Review.
Cited by
-
Morphine Efficacy, Tolerance, and Hypersensitivity Are Altered After Modulation of SUR1 Subtype KATP Channel Activity in Mice.Front Neurosci. 2019 Oct 22;13:1122. doi: 10.3389/fnins.2019.01122. eCollection 2019. Front Neurosci. 2019. PMID: 31695594 Free PMC article.
-
Opioid-Induced Hyperalgesic Priming in Single Nociceptors.J Neurosci. 2021 Jan 6;41(1):31-46. doi: 10.1523/JNEUROSCI.2160-20.2020. Epub 2020 Nov 17. J Neurosci. 2021. PMID: 33203743 Free PMC article.
-
A Systematic Review of the Biological Effects of Cordycepin.Molecules. 2021 Sep 28;26(19):5886. doi: 10.3390/molecules26195886. Molecules. 2021. PMID: 34641429 Free PMC article.
-
Sensitization of human and rat nociceptors by low dose morphine is toll-like receptor 4-dependent.Mol Pain. 2024 Jan-Dec;20:17448069241227922. doi: 10.1177/17448069241227922. Mol Pain. 2024. PMID: 38195088 Free PMC article.
-
Role of Nociceptor Toll-like Receptor 4 (TLR4) in Opioid-Induced Hyperalgesia and Hyperalgesic Priming.J Neurosci. 2019 Aug 14;39(33):6414-6424. doi: 10.1523/JNEUROSCI.0966-19.2019. Epub 2019 Jun 17. J Neurosci. 2019. PMID: 31209174 Free PMC article.
References
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Research Materials