Neuroendocrine mechanisms in oxaliplatin-induced hyperalgesic priming
- PMID: 36729863
- PMCID: PMC10182219
- DOI: 10.1097/j.pain.0000000000002828
Neuroendocrine mechanisms in oxaliplatin-induced hyperalgesic priming
Abstract
Stress plays a major role in the symptom burden of oncology patients and can exacerbate cancer chemotherapy-induced peripheral neuropathy (CIPN), a major adverse effect of many classes of chemotherapy. We explored the role of stress in the persistent phase of the pain induced by oxaliplatin. Oxaliplatin induced hyperalgesic priming, a model of the transition to chronic pain, as indicated by prolongation of hyperalgesia produced by prostaglandin E 2 , in male rats, which was markedly attenuated in adrenalectomized rats. A neonatal handling protocol that induces stress resilience in adult rats prevented oxaliplatin-induced hyperalgesic priming. To elucidate the role of the hypothalamic-pituitary-adrenal and sympathoadrenal neuroendocrine stress axes in oxaliplatin CIPN, we used intrathecally administered antisense oligodeoxynucleotides (ODNs) directed against mRNA for receptors mediating the effects of catecholamines and glucocorticoids, and their second messengers, to reduce their expression in nociceptors. Although oxaliplatin-induced hyperalgesic priming was attenuated by intrathecal administration of β 2 -adrenergic and glucocorticoid receptor antisense ODNs, oxaliplatin-induced hyperalgesia was only attenuated by β 2 -adrenergic receptor antisense. Administration of pertussis toxin, a nonselective inhibitor of Gα i/o proteins, attenuated hyperalgesic priming. Antisense ODNs for Gα i 1 and Gα o also attenuated hyperalgesic priming. Furthermore, antisense for protein kinase C epsilon, a second messenger involved in type I hyperalgesic priming, also attenuated oxaliplatin-induced hyperalgesic priming. Inhibitors of second messengers involved in the maintenance of type I (cordycepin) and type II (SSU6656 and U0126) hyperalgesic priming both attenuated hyperalgesic priming. These experiments support a role for neuroendocrine stress axes in hyperalgesic priming, in male rats with oxaliplatin CIPN.
Copyright © 2023 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the International Association for the Study of Pain.
Conflict of interest statement
The authors have no conflict of interest to declare.
Figures








Similar articles
-
Mu-Opioid Receptor (MOR) Dependence of Pain in Chemotherapy-Induced Peripheral Neuropathy.J Neurosci. 2024 Oct 16;44(42):e0243242024. doi: 10.1523/JNEUROSCI.0243-24.2024. J Neurosci. 2024. PMID: 39256047 Free PMC article.
-
Neuroendocrine Stress Axis-Dependence of Duloxetine Analgesia (Anti-Hyperalgesia) in Chemotherapy-Induced Peripheral Neuropathy.J Neurosci. 2022 Jan 19;42(3):405-415. doi: 10.1523/JNEUROSCI.1691-21.2021. Epub 2021 Dec 8. J Neurosci. 2022. PMID: 34880120 Free PMC article.
-
Gi-protein-coupled 5-HT1B/D receptor agonist sumatriptan induces type I hyperalgesic priming.Pain. 2016 Aug;157(8):1773-1782. doi: 10.1097/j.pain.0000000000000581. Pain. 2016. PMID: 27075428 Free PMC article.
-
Roles of Proton-Sensing Receptors in the Transition from Acute to Chronic Pain.J Dent Res. 2016 Feb;95(2):135-42. doi: 10.1177/0022034515618382. Epub 2015 Nov 23. J Dent Res. 2016. PMID: 26597969 Review.
-
Hyperalgesic Priming in the Transition From Acute to Chronic Pain: Focus on Different Models and the Molecular Mechanisms Involved.J Pain Res. 2025 Mar 21;18:1491-1501. doi: 10.2147/JPR.S514851. eCollection 2025. J Pain Res. 2025. PMID: 40135188 Free PMC article. Review.
Cited by
-
Electrical stimulation enhances mitochondrial trafficking as a neuroprotective mechanism against chemotherapy-induced peripheral neuropathy.iScience. 2024 Jan 30;27(3):109052. doi: 10.1016/j.isci.2024.109052. eCollection 2024 Mar 15. iScience. 2024. PMID: 38375222 Free PMC article.
-
The Primary Cilium and its Hedgehog Signaling in Nociceptors Contribute to Inflammatory and Neuropathic Pain.Res Sq [Preprint]. 2024 Feb 26:rs.3.rs-3812442. doi: 10.21203/rs.3.rs-3812442/v1. Res Sq. 2024. PMID: 38464172 Free PMC article. Preprint.
-
Role of pattern recognition receptors in chemotherapy-induced neuropathic pain.Brain. 2024 Mar 1;147(3):1025-1042. doi: 10.1093/brain/awad339. Brain. 2024. PMID: 37787114 Free PMC article.
-
Mu-Opioid Receptor (MOR) Dependence of Pain in Chemotherapy-Induced Peripheral Neuropathy.J Neurosci. 2024 Oct 16;44(42):e0243242024. doi: 10.1523/JNEUROSCI.0243-24.2024. J Neurosci. 2024. PMID: 39256047 Free PMC article.
-
Sex differences in the transition to chronic pain.J Clin Invest. 2025 Jun 2;135(11):e191931. doi: 10.1172/JCI191931. eCollection 2025 Jun 2. J Clin Invest. 2025. PMID: 40454485 Free PMC article. Review.
References
-
- Akana SF, Cascio CS, Shinsako J, Dallman MF. Corticosterone: narrow range required for normal body and thymus weight and ACTH. Am J Physiol 1985;249:R527–32. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical