A systems biology approach for pathway level analysis
- PMID: 17785539
- PMCID: PMC1987343
- DOI: 10.1101/gr.6202607
A systems biology approach for pathway level analysis
Abstract
A common challenge in the analysis of genomics data is trying to understand the underlying phenomenon in the context of all complex interactions taking place on various signaling pathways. A statistical approach using various models is universally used to identify the most relevant pathways in a given experiment. Here, we show that the existing pathway analysis methods fail to take into consideration important biological aspects and may provide incorrect results in certain situations. By using a systems biology approach, we developed an impact analysis that includes the classical statistics but also considers other crucial factors such as the magnitude of each gene's expression change, their type and position in the given pathways, their interactions, etc. The impact analysis is an attempt to a deeper level of statistical analysis, informed by more pathway-specific biology than the existing techniques. On several illustrative data sets, the classical analysis produces both false positives and false negatives, while the impact analysis provides biologically meaningful results. This analysis method has been implemented as a Web-based tool, Pathway-Express, freely available as part of the Onto-Tools (http://vortex.cs.wayne.edu).
Figures





Similar articles
-
Onto-Tools: new additions and improvements in 2006.Nucleic Acids Res. 2007 Jul;35(Web Server issue):W206-11. doi: 10.1093/nar/gkm327. Epub 2007 Jun 21. Nucleic Acids Res. 2007. PMID: 17584796 Free PMC article.
-
SAMNetWeb: identifying condition-specific networks linking signaling and transcription.Bioinformatics. 2015 Apr 1;31(7):1124-6. doi: 10.1093/bioinformatics/btu748. Epub 2014 Nov 19. Bioinformatics. 2015. PMID: 25414365 Free PMC article.
-
Recent additions and improvements to the Onto-Tools.Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W762-5. doi: 10.1093/nar/gki472. Nucleic Acids Res. 2005. PMID: 15980579 Free PMC article.
-
Resources for integrative systems biology: from data through databases to networks and dynamic system models.Brief Bioinform. 2006 Dec;7(4):318-30. doi: 10.1093/bib/bbl036. Epub 2006 Oct 13. Brief Bioinform. 2006. PMID: 17040977 Review.
-
Designing microarray and RNA-Seq experiments for greater systems biology discovery in modern plant genomics.Mol Plant. 2015 Feb;8(2):196-206. doi: 10.1016/j.molp.2014.11.012. Epub 2014 Dec 19. Mol Plant. 2015. PMID: 25680773 Review.
Cited by
-
Identification of miRNA-Mediated Subpathways as Prostate Cancer Biomarkers Based on Topological Inference in a Machine Learning Process Using Integrated Gene and miRNA Expression Data.Front Genet. 2021 Mar 24;12:656526. doi: 10.3389/fgene.2021.656526. eCollection 2021. Front Genet. 2021. PMID: 33841512 Free PMC article.
-
Peripheral challenge with a viral mimic upregulates expression of the complement genes in the hippocampus.J Neuroimmunol. 2015 Aug 15;285:137-42. doi: 10.1016/j.jneuroim.2015.06.003. Epub 2015 Jun 12. J Neuroimmunol. 2015. PMID: 26198930 Free PMC article.
-
Quantification of promoting efficiency and reducing toxicity of Traditional Chinese Medicine: A case study of the combination of Tripterygium wilfordii hook. f. and Lysimachia christinae hance in the treatment of lung cancer.Front Pharmacol. 2022 Oct 20;13:1018273. doi: 10.3389/fphar.2022.1018273. eCollection 2022. Front Pharmacol. 2022. PMID: 36339610 Free PMC article.
-
An engineered human cardiac tissue model reveals contributions of systemic lupus erythematosus autoantibodies to myocardial injury.Nat Cardiovasc Res. 2024 Sep;3(9):1123-1139. doi: 10.1038/s44161-024-00525-w. Epub 2024 Aug 15. Nat Cardiovasc Res. 2024. PMID: 39195859 Free PMC article.
-
Inhibition of astroglial NF-κB enhances oligodendrogenesis following spinal cord injury.J Neuroinflammation. 2013 Jul 23;10:92. doi: 10.1186/1742-2094-10-92. J Neuroinflammation. 2013. PMID: 23880092 Free PMC article.
References
-
- Beer D.G., Kardia S.L., Huang C.-C., Giordano T.J., Levin A.M., Misek D.E., Lin L., Chen G., Gharib T.G., Thomas D.G., Kardia S.L., Huang C.-C., Giordano T.J., Levin A.M., Misek D.E., Lin L., Chen G., Gharib T.G., Thomas D.G., Huang C.-C., Giordano T.J., Levin A.M., Misek D.E., Lin L., Chen G., Gharib T.G., Thomas D.G., Giordano T.J., Levin A.M., Misek D.E., Lin L., Chen G., Gharib T.G., Thomas D.G., Levin A.M., Misek D.E., Lin L., Chen G., Gharib T.G., Thomas D.G., Misek D.E., Lin L., Chen G., Gharib T.G., Thomas D.G., Lin L., Chen G., Gharib T.G., Thomas D.G., Chen G., Gharib T.G., Thomas D.G., Gharib T.G., Thomas D.G., Thomas D.G., et al. Gene-expression profiles predict survival of patients with lung adenocarcinoma. Nat. Med. 2002;8:816–824. - PubMed
-
- Beviglia L., Golubovskaya V., Xu L., Yang X., Craven R.J., Cance W.G., Golubovskaya V., Xu L., Yang X., Craven R.J., Cance W.G., Xu L., Yang X., Craven R.J., Cance W.G., Yang X., Craven R.J., Cance W.G., Craven R.J., Cance W.G., Cance W.G. Focal adhesion kinase N-terminus in breast carcinoma cells induces rounding, detachment and apoptosis. Biochem. J. 2003;373:201–210. - PMC - PubMed
-
- Canales R.D., Luo Y., Willey J.C., Austermiller B., Barbacioru C.C., Boysen C., Hunkapiller K., Jensen R.V., Knight C.R., Lee K.Y., Luo Y., Willey J.C., Austermiller B., Barbacioru C.C., Boysen C., Hunkapiller K., Jensen R.V., Knight C.R., Lee K.Y., Willey J.C., Austermiller B., Barbacioru C.C., Boysen C., Hunkapiller K., Jensen R.V., Knight C.R., Lee K.Y., Austermiller B., Barbacioru C.C., Boysen C., Hunkapiller K., Jensen R.V., Knight C.R., Lee K.Y., Barbacioru C.C., Boysen C., Hunkapiller K., Jensen R.V., Knight C.R., Lee K.Y., Boysen C., Hunkapiller K., Jensen R.V., Knight C.R., Lee K.Y., Hunkapiller K., Jensen R.V., Knight C.R., Lee K.Y., Jensen R.V., Knight C.R., Lee K.Y., Knight C.R., Lee K.Y., Lee K.Y., et al. Evaluation of DNA microarray results with quantitative gene expression platforms. Nat. Biotechnol. 2006;24:1115–1122. - PubMed
-
- Chen Z., Gibson T.B., Robinson F., Silvestro L., Pearson G., Xu B., Wright A., Vanderbilt C., Cobb M.H., Gibson T.B., Robinson F., Silvestro L., Pearson G., Xu B., Wright A., Vanderbilt C., Cobb M.H., Robinson F., Silvestro L., Pearson G., Xu B., Wright A., Vanderbilt C., Cobb M.H., Silvestro L., Pearson G., Xu B., Wright A., Vanderbilt C., Cobb M.H., Pearson G., Xu B., Wright A., Vanderbilt C., Cobb M.H., Xu B., Wright A., Vanderbilt C., Cobb M.H., Wright A., Vanderbilt C., Cobb M.H., Vanderbilt C., Cobb M.H., Cobb M.H. MAP kinases. Chem. Rev. 2001;101:2449–2476. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
- R21 CA100740/CA/NCI NIH HHS/United States
- 2P30 CA022453-24/CA/NCI NIH HHS/United States
- 5R21EB00090-03/EB/NIBIB NIH HHS/United States
- 1R21CA100740-01/CA/NCI NIH HHS/United States
- R21 EB000990/EB/NIBIB NIH HHS/United States
- U01 CA117478/CA/NCI NIH HHS/United States
- S10 RR017857/RR/NCRR NIH HHS/United States
- R01 NS045207/NS/NINDS NIH HHS/United States
- P30 CA022453/CA/NCI NIH HHS/United States
- 1U01CA117478-01/CA/NCI NIH HHS/United States
- R01 HG003491/HG/NHGRI NIH HHS/United States
- 1S10 RR017857-01/RR/NCRR NIH HHS/United States
- 1R01NS045207-01/NS/NINDS NIH HHS/United States
- 1R01HG003491-01A1/HG/NHGRI NIH HHS/United States
LinkOut - more resources
Full Text Sources
Other Literature Sources