Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Aug 18;275(33):25116-21.
doi: 10.1074/jbc.M003643200.

Isolation of a tarantula toxin specific for a class of proton-gated Na+ channels

Affiliations
Free article

Isolation of a tarantula toxin specific for a class of proton-gated Na+ channels

P Escoubas et al. J Biol Chem. .
Free article

Abstract

Acid sensing is associated with nociception, taste transduction, and perception of extracellular pH fluctuations in the brain. Acid sensing is carried out by the simplest class of ligand-gated channels, the family of H(+)-gated Na(+) channels. These channels have recently been cloned and belong to the acid-sensitive ion channel (ASIC) family. Toxins from animal venoms have been essential for studies of voltage-sensitive and ligand-gated ion channels. This paper describes a novel 40-amino acid toxin from tarantula venom, which potently blocks (IC(50) = 0.9 nm) a particular subclass of ASIC channels that are highly expressed in both central nervous system neurons and sensory neurons from dorsal root ganglia. This channel type has properties identical to those described for the homomultimeric assembly of ASIC1a. Homomultimeric assemblies of other members of the ASIC family and heteromultimeric assemblies of ASIC1a with other ASIC subunits are insensitive to the toxin. The new toxin is the first high affinity and highly selective pharmacological agent for this novel class of ionic channels. It will be important for future studies of their physiological and physio-pathological roles.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources