Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

T-cell priming by dendritic cells in lymph nodes occurs in three distinct phases

Abstract

Primary T-cell responses in lymph nodes (LNs) require contact-dependent information exchange between T cells and dendritic cells (DCs). Because lymphocytes continually enter and leave normal LNs, the resident lymphocyte pool is composed of non-synchronized cells with different dwell times that display heterogeneous behaviour in mouse LNs in vitro1,2,3. Here we employ two-photon microscopy in vivo to study antigen-presenting DCs and naive T cells whose dwell time in LNs was synchronized. During the first 8 h after entering from the blood, T cells underwent multiple short encounters with DCs, progressively decreased their motility, and upregulated activation markers. During the subsequent 12 h T cells formed long-lasting stable conjugates with DCs and began to secrete interleukin-2 and interferon-γ. On the second day, coinciding with the onset of proliferation, T cells resumed their rapid migration and short DC contacts. Thus, T-cell priming by DCs occurs in three successive stages: transient serial encounters during the first activation phase are followed by a second phase of stable contacts culminating in cytokine production, which makes a transition into a third phase of high motility and rapid proliferation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Surface phenotype and migratory properties of DCs in popliteal LNs.
Figure 2: Effect of antigen on T-cell motility in LNs.
Figure 3: Progressive changes in T-cell–DC interaction dynamics indicate three phases of antigen recognition.

Similar content being viewed by others

References

  1. Stoll, S., Delon, J., Brotz, T. M. & Germain, R. N. Dynamic imaging of T cell–dendritic cell interactions in lymph nodes. Science 296, 1873–1876 (2002)

    Article  ADS  PubMed  Google Scholar 

  2. Miller, M. J., Wei, S. H., Parker, I. & Cahalan, M. D. Two-photon imaging of lymphocyte motility and antigen response in intact lymph node. Science 296, 1869–1873 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Bousso, P. & Robey, E. Dynamics of CD8+ T cell priming by dendritic cells in intact lymph nodes. Nature Immunol. 4, 579–585 (2003)

    Article  CAS  Google Scholar 

  4. Gowans, J. L. & Knight, E. J. The route of re-circulation of lymphocytes in the rat. Proc. R. Soc. Lond. B 159, 257–282 (1964)

    Article  ADS  CAS  PubMed  Google Scholar 

  5. von Andrian, U. H. Immunology. T cell activation in six dimensions. Science 296, 1815–1817 (2002)

    Article  CAS  PubMed  Google Scholar 

  6. Cahalan, M. D., Parker, I., Wei, S. H. & Miller, M. J. Two-photon tissue imaging: seeing the immune system in a fresh light. Nature Rev. Immunol. 2, 872–880 (2002)

    Article  CAS  Google Scholar 

  7. von Andrian, U. H. & Mempel, T. R. Homing and cellular traffic in lymph nodes. Nature Rev. Immunol. 3, 867–878 (2003)

    Article  CAS  Google Scholar 

  8. von Andrian, U. H. Intravital microscopy of the peripheral lymph node microcirculation in mice. Microcirculation 3, 287–300 (1996)

    Article  CAS  PubMed  Google Scholar 

  9. Miller, M. J., Wei, S. H., Cahalan, M. D. & Parker, I. Autonomous T cell trafficking examined in vivo with intravital two-photon microscopy. Proc. Natl Acad. Sci. USA 100, 2604–2609 (2003)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gallatin, W. M., Weissman, I. L. & Butcher, E. C. A cell-surface molecule involved in organ-specific homing of lymphocytes. Nature 304, 30–34 (1983)

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Gunn, M. D. et al. Mice lacking expression of secondary lymphoid organ chemokine have defects in lymphocyte homing and dendritic cell localization. J. Exp. Med. 189, 451–460 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sallusto, F. et al. Rapid and coordinated switch in chemokine receptor expression during dendritic cell maturation. Eur. J. Immunol. 28, 2760–2769 (1998)

    Article  CAS  PubMed  Google Scholar 

  13. Bajenoff, M., Granjeaud, S. & Guerder, S. The strategy of T cell antigen-presenting cell encounter in antigen-draining lymph nodes revealed by imaging of initial T cell activation. J. Exp. Med. 198, 715–724 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Langenkamp, A., Messi, M., Lanzavecchia, A. & Sallusto, F. Kinetics of dendritic cell activation: impact on priming of TH1, TH2 and nonpolarized T cells. Nature Immunol. 1, 311–316 (2000)

    Article  CAS  Google Scholar 

  15. Saxton, M. J. & Jacobson, K. Single-particle tracking: applications to membrane dynamics. Annu. Rev. Biophys. Biomol. Struct. 26, 373–399 (1997)

    Article  CAS  PubMed  Google Scholar 

  16. Tang, H. L. & Cyster, J. G. Chemokine up-regulation and activated T cell attraction by maturing dendritic cells. Science 284, 819–822 (1999)

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Dustin, M. L., Bromley, S. K., Zhengyan, K., Peterson, D. A. & Unanue, E. R. Antigen receptor engagement delivers a stop signal to migrating T lymphocytes. Proc. Natl Acad. Sci. USA 94, 3909–3913 (1997)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Monks, C. R. F., Freiberg, B. A., Kupfer, H., Sciaky, N. & Kupfer, A. Three-dimensional segregation of supramolecular activation clusters in T cells. Nature 394, 82–86 (1998)

    Article  ADS  Google Scholar 

  19. Grakoui, A. et al. The immunological synapse: a molecular machine controlling T cell activation. Science 285, 221–227 (1999)

    Article  CAS  PubMed  Google Scholar 

  20. Lee, K. H. et al. T cell receptor signaling precedes immunological synapse formation. Science 295, 1539–1542 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Gunzer, M. et al. Antigen presentation in extracellular matrix: interactions of T cells with dendritic cells are dynamic, short lived, and sequential. Immunity 13, 323–332 (2000)

    Article  CAS  PubMed  Google Scholar 

  22. Ingulli, E., Mondino, A., Khoruts, A. & Jenkins, M. K. In vivo detection of dendritic cell antigen presentation to CD4+ T cells. J. Exp. Med. 185, 2133–2141 (1997)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Norbury, C. C., Malide, D., Gibbs, J. S., Bennink, J. R. & Yewdell, J. W. Visualizing priming of virus-specific CD8+ T cells by infected dendritic cells in vivo. Nature Immunol. 3, 265–271 (2002)

    Article  CAS  Google Scholar 

  24. Murphy, K. M., Heimberger, A. B. & Loh, D. Y. Induction by antigen of intrathymic apoptosis of CD4+ CD8+ TCRlo thymocytes in vivo. Science 250, 1720–1723 (1990)

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Stefanova, I., Dorfman, J. R. & Germain, R. N. Self-recognition promotes the foreign antigen sensitivity of naive T lymphocytes. Nature 420, 429–434 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Faroudi, M., Zaru, R., Paulet, P., Muller, S. & Valitutti, S. Cutting edge: T lymphocyte activation by repeated immunological synapse formation and intermittent signaling. J. Immunol. 171, 1128–1132 (2003)

    Article  CAS  PubMed  Google Scholar 

  27. van Stipdonk, M. J. et al. Dynamic programming of CD8+ T lymphocyte responses. Nature Immunol. 4, 361–365 (2003)

    Article  CAS  Google Scholar 

  28. Hurez, V. et al. Restricted clonal expression of IL-2 by naive T cells reflects differential dynamic interactions with dendritic cells. J. Exp. Med. 198, 123–132 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pircher, H., Burki, K., Lang, R., Hengartner, H. & Zinkernagel, R. M. Tolerance induction in double specific T-cell receptor transgenic mice varies with antigen. Nature 342, 559–561 (1989)

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Mora, J. R. et al. Selective imprinting of gut-homing T cells by Peyer's patch dendritic cells. Nature 424, 88–93 (2003)

    ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank T. Buschman for software programming, H. Leung and B. Reinhardt for technical assistance, and D. Mathis, J. Lieberman and H. Ploegh for critical reading of the manuscript. This work was supported by grants from the NIH and the Dana Foundation Immuno-Imaging Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich H. von Andrian.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

41586_2004_BFnature02238_MOESM1_ESM.pdf

Supplementary Figure 1: DCs are concentrated in close vicinity to high endothelial venules early after entry into LNs. (PDF 125 kb)

41586_2004_BFnature02238_MOESM2_ESM.pdf

Supplementary Figure 2: Absolute (a) and cumulative (b) contact duration between DO11.10 TCR transgenic CD4+ T cells and peptide-loaded DCs in popliteal lymph nodes. (PDF 26 kb)

41586_2004_BFnature02238_MOESM3_ESM.pdf

Supplementary Figure 3: Absolute and cumulative contact duration between P14 TCR transgenic CD8+ T cells and peptide-loaded DCs in popliteal lymph nodes. (PDF 23 kb)

41586_2004_BFnature02238_MOESM4_ESM.mov

Supplementary Movie 1A: Inhomogeneous distribution of Ag-loaded DCs and T cells in LNs early after LN entry. (MOV 5392 kb)

Supplementary Movie 1B: DCs cluster around HEV early after LN entry. (MOV 5984 kb)

41586_2004_BFnature02238_MOESM6_ESM.mov

Supplementary Movie 2: Homogenous distribution of DCs and rapid T cell migration in LNs late after LN entry. (MOV 12220 kb)

Supplementary Movie 3: DC migration and shape change in LNs. (MOV 5425 kb)

Supplementary Movie 4: Lack of blood flow leads to rapid cessation of T cell and DC migration. (MOV 2444 kb)

Supplementary Movie 5: T cells cover large territories in LNs. (MOV 7084 kb)

Supplementary Movie 6: Short, serial T cell-DC contacts predominate during phase one. (MOV 4616 kb)

Supplementary Movie 7: Stable T cell-DC conjugates predominate during phase two. (MOV 13258 kb)

41586_2004_BFnature02238_MOESM12_ESM.mov

Supplementary Movie 8: DCs (red) can undergo stable and dynamic interactions with T cells (green) simultaneously. (MOV 1164 kb)

Supplementary Figure and Movie legends (DOC 29 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mempel, T., Henrickson, S. & von Andrian, U. T-cell priming by dendritic cells in lymph nodes occurs in three distinct phases. Nature 427, 154–159 (2004). https://doi.org/10.1038/nature02238

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02238

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing