IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v192y2025ics0965856424004178.html
   My bibliography  Save this article

Analysing the role of traffic volume as mediator in transport policy evaluation with causal mediation analysis and targeted learning

Author

Listed:
  • Zhang, Yingheng
  • Li, Haojie
  • Ren, Gang

Abstract

Traffic volume has often been analysed as the outcome of interest in transport policy evaluation. However, its role as mediator lying in the causal pathways between policies and other outcomes has rarely been explored. We investigate this issue by using a targeted learning-based causal mediation analysis approach. Compared to the traditional approach that has been used in transport research, namely the Baron-Kenny multiple-regression approach, the causal one incorporating potential outcomes has clearer causal definitions and interpretations. Also, targeted learning has higher functional flexibility by enabling the use of supervised learning algorithms. Simulations indicate that targeted learning outperforms the traditional approach in complex settings with nonlinearities and interactions. We present an empirical example, quantifying the direct effect of the London Cycle Superhighways (LCS) on traffic speed, and the indirect effect via traffic volume as mediator. Our results indicate that the installation of LCS has reduced motor traffic along the routes. The average causal effect on annual average daily traffic (AADT) relative to the AADT in the pre-intervention period is − 9.2 %. Regarding the direct and indirect effects, we find that LCS has a negative direct effect on traffic speed, which might be due to less space available for motor vehicles, while LCS can increase traffic speed via reducing the amount of motor traffic. The direct effect on traffic speed relative to the speed in the pre-intervention period is − 2.0 %, whereas the indirect effect is + 1.3 %. As a result, the total causal effect on speed is small.

Suggested Citation

  • Zhang, Yingheng & Li, Haojie & Ren, Gang, 2025. "Analysing the role of traffic volume as mediator in transport policy evaluation with causal mediation analysis and targeted learning," Transportation Research Part A: Policy and Practice, Elsevier, vol. 192(C).
  • Handle: RePEc:eee:transa:v:192:y:2025:i:c:s0965856424004178
    DOI: 10.1016/j.tra.2024.104369
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856424004178
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2024.104369?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    --->

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018. "Double/debiased machine learning for treatment and structural parameters," Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
    2. Ou, Hui & Tang, Tie-Qiao, 2018. "Impacts of moving bottlenecks on traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 500(C), pages 131-138.
    3. Li, Tienan & Chen, Danjue & Zhou, Hao & Laval, Jorge & Xie, Yuanchang, 2021. "Car-following behavior characteristics of adaptive cruise control vehicles based on empirical experiments," Transportation Research Part B: Methodological, Elsevier, vol. 147(C), pages 67-91.
    4. Iván Díaz & Nima S. Hejazi, 2020. "Causal mediation analysis for stochastic interventions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(3), pages 661-683, July.
    5. Suvrat Dhanorkar & Gordon Burtch, 2022. "The Heterogeneous Effects of P2P Ride-Hailing on Traffic: Evidence from Uber’s Entry in California," Transportation Science, INFORMS, vol. 56(3), pages 750-774, May.
    6. Robert Noland & Mohammed Quddus & Washington Ochieng, 2008. "The effect of the London congestion charge on road casualties: an intervention analysis," Transportation, Springer, vol. 35(1), pages 73-91, January.
    7. Helmut Farbmacher & Martin Huber & Lukáš Lafférs & Henrika Langen & Martin Spindler, 2022. "Causal mediation analysis with double machine learning [Mediation analysis via potential outcomes models]," The Econometrics Journal, Royal Economic Society, vol. 25(2), pages 277-300.
    8. Heejung Bang & James M. Robins, 2005. "Doubly Robust Estimation in Missing Data and Causal Inference Models," Biometrics, The International Biometric Society, vol. 61(4), pages 962-973, December.
    9. Zheng Wenjing & van der Laan Mark J., 2012. "Targeted Maximum Likelihood Estimation of Natural Direct Effects," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-40, January.
    10. Laila Ait Bihi Ouali & Davis Musuuga & Daniel J Graham, 2021. "Quantifying responses to changes in the jurisdiction of a congestion charge: A study of the London western extension," PLOS ONE, Public Library of Science, vol. 16(7), pages 1-14, July.
    11. Ding, Chuan & Wang, Donggen & Liu, Chao & Zhang, Yi & Yang, Jiawen, 2017. "Exploring the influence of built environment on travel mode choice considering the mediating effects of car ownership and travel distance," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 65-80.
    12. Beaudoin, Justin & Farzin, Y. Hossein & Lin Lawell, C.-Y. Cynthia, 2015. "Public transit investment and sustainable transportation: A review of studies of transit's impact on traffic congestion and air quality," Research in Transportation Economics, Elsevier, vol. 52(C), pages 15-22.
    13. Choi, Kwangyul & Zhang, Ming, 2017. "The impact of metropolitan, county, and local land use on driving emissions in US metropolitan areas: Mediator effects of vehicle travel characteristics," Journal of Transport Geography, Elsevier, vol. 64(C), pages 195-202.
    14. Fu, Miao & Kelly, J. Andrew & Clinch, J. Peter, 2017. "Estimating annual average daily traffic and transport emissions for a national road network: A bottom-up methodology for both nationally-aggregated and spatially-disaggregated results," Journal of Transport Geography, Elsevier, vol. 58(C), pages 186-195.
    15. Morton, Craig & Lovelace, Robin & Anable, Jillian, 2017. "Exploring the effect of local transport policies on the adoption of low emission vehicles: Evidence from the London Congestion Charge and Hybrid Electric Vehicles," Transport Policy, Elsevier, vol. 60(C), pages 34-46.
    16. Kosuke Imai & Dustin Tingley & Teppei Yamamoto, 2013. "Experimental designs for identifying causal mechanisms," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 176(1), pages 5-51, January.
    17. Yao, Di & Xu, Liqun & Li, Jinpei, 2020. "Does technical efficiency play a mediating role between bus facility scale and ridership attraction? Evidence from bus practices in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 77-96.
    18. Li, Haojie & Ding, Hongliang & Ren, Gang & Xu, Chengcheng, 2018. "Effects of the London Cycle Superhighways on the usage of the London Cycle Hire," Transportation Research Part A: Policy and Practice, Elsevier, vol. 111(C), pages 304-315.
    19. Whitehead, Jake & Franklin, Joel P. & Washington, Simon, 2014. "The impact of a congestion pricing exemption on the demand for new energy efficient vehicles in Stockholm," Transportation Research Part A: Policy and Practice, Elsevier, vol. 70(C), pages 24-40.
    20. Mikkel Thorhauge & Elisabetta Cherchi & Joan L. Walker & Jeppe Rich, 2019. "The role of intention as mediator between latent effects and behavior: application of a hybrid choice model to study departure time choices," Transportation, Springer, vol. 46(4), pages 1421-1445, August.
    21. van der Laan Mark J. & Rubin Daniel, 2006. "Targeted Maximum Likelihood Learning," The International Journal of Biostatistics, De Gruyter, vol. 2(1), pages 1-40, December.
    22. Wen, Yifan & Wu, Ruoxi & Zhou, Zihang & Zhang, Shaojun & Yang, Shengge & Wallington, Timothy J. & Shen, Wei & Tan, Qinwen & Deng, Ye & Wu, Ye, 2022. "A data-driven method of traffic emissions mapping with land use random forest models," Applied Energy, Elsevier, vol. 305(C).
    23. Van Acker, Veronique & Witlox, Frank, 2010. "Car ownership as a mediating variable in car travel behaviour research using a structural equation modelling approach to identify its dual relationship," Journal of Transport Geography, Elsevier, vol. 18(1), pages 65-74.
    24. Mishra, Gouri Shankar & Clewlow, Regina R. & Mokhtarian, Patricia L. & Widaman, Keith F., 2015. "The effect of carsharing on vehicle holdings and travel behavior: A propensity score and causal mediation analysis of the San Francisco Bay Area," Research in Transportation Economics, Elsevier, vol. 52(C), pages 46-55.
    25. Gruber, Susan & Laan, Mark van der, 2012. "tmle: An R Package for Targeted Maximum Likelihood Estimation," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 51(i13).
    26. Ding, Hongliang & Sze, N.N. & Li, Haojie & Guo, Yanyong, 2021. "Affected area and residual period of London Congestion Charging scheme on road safety," Transport Policy, Elsevier, vol. 100(C), pages 120-128.
    27. Jacob M. Montgomery & Brendan Nyhan & Michelle Torres, 2018. "How Conditioning on Posttreatment Variables Can Ruin Your Experiment and What to Do about It," American Journal of Political Science, John Wiley & Sons, vol. 62(3), pages 760-775, July.
    28. Imbens,Guido W. & Rubin,Donald B., 2015. "Causal Inference for Statistics, Social, and Biomedical Sciences," Cambridge Books, Cambridge University Press, number 9780521885881, Enero-Abr.
    29. Lei, Yiyuan & Ozbay, Kaan, 2021. "A robust analysis of the impacts of the stay-at-home policy on taxi and Citi Bike usage: A case study of Manhattan," Transport Policy, Elsevier, vol. 110(C), pages 487-498.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yingheng Zhang & Haojie Li & Gang Ren, 2025. "Ex-post evaluation of transport interventions with causal mediation analysis," Transportation, Springer, vol. 52(1), pages 93-126, February.
    2. Isaac Meza & Rahul Singh, 2021. "Nested Nonparametric Instrumental Variable Regression," Papers 2112.14249, arXiv.org, revised May 2025.
    3. Xiang Zhou, 2022. "Semiparametric estimation for causal mediation analysis with multiple causally ordered mediators," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(3), pages 794-821, July.
    4. Helmut Farbmacher & Martin Huber & Lukáš Lafférs & Henrika Langen & Martin Spindler, 2022. "Causal mediation analysis with double machine learning [Mediation analysis via potential outcomes models]," The Econometrics Journal, Royal Economic Society, vol. 25(2), pages 277-300.
    5. Iván Díaz & Katherine L. Hoffman & Nima S. Hejazi, 2024. "Causal survival analysis under competing risks using longitudinal modified treatment policies," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 30(1), pages 213-236, January.
    6. Iván Díaz & Nima S. Hejazi, 2020. "Causal mediation analysis for stochastic interventions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(3), pages 661-683, July.
    7. Yiyi Huo & Yingying Fan & Fang Han, 2023. "On the adaptation of causal forests to manifold data," Papers 2311.16486, arXiv.org, revised Dec 2023.
    8. Michael Lechner, 2023. "Causal Machine Learning and its use for public policy," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 159(1), pages 1-15, December.
    9. Iván Díaz & Nicholas Williams & Katherine L. Hoffman & Nima S. Hejazi, 2025. "Author correction to: “causal survival analysis under competing risks using longitudinal modified treatment policies”," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 31(2), pages 442-471, April.
    10. Harsh Parikh & Carlos Varjao & Louise Xu & Eric Tchetgen Tchetgen, 2022. "Validating Causal Inference Methods," Papers 2202.04208, arXiv.org, revised Jul 2022.
    11. Jonathan Fuhr & Philipp Berens & Dominik Papies, 2024. "Estimating Causal Effects with Double Machine Learning -- A Method Evaluation," Papers 2403.14385, arXiv.org, revised Apr 2024.
    12. Michael C Knaus, 2022. "Double machine learning-based programme evaluation under unconfoundedness [Econometric methods for program evaluation]," The Econometrics Journal, Royal Economic Society, vol. 25(3), pages 602-627.
    13. Antonelli Joseph & Cefalu Matthew, 2020. "Averaging causal estimators in high dimensions," Journal of Causal Inference, De Gruyter, vol. 8(1), pages 92-107, January.
    14. Hugo Bodory & Martin Huber & Lukáš Lafférs, 2022. "Evaluating (weighted) dynamic treatment effects by double machine learning [Identification of causal effects using instrumental variables]," The Econometrics Journal, Royal Economic Society, vol. 25(3), pages 628-648.
    15. Susan Gruber & Mark J. van der Laan, 2013. "An Application of Targeted Maximum Likelihood Estimation to the Meta-Analysis of Safety Data," Biometrics, The International Biometric Society, vol. 69(1), pages 254-262, March.
    16. Rahul Singh & Liyuan Xu & Arthur Gretton, 2020. "Kernel Methods for Causal Functions: Dose, Heterogeneous, and Incremental Response Curves," Papers 2010.04855, arXiv.org, revised Oct 2022.
    17. Dmitry Arkhangelsky & Guido Imbens, 2023. "Causal Models for Longitudinal and Panel Data: A Survey," Papers 2311.15458, arXiv.org, revised Jun 2024.
    18. Yikun Zhang & Yen-Chi Chen, 2025. "Doubly Robust Inference on Causal Derivative Effects for Continuous Treatments," Papers 2501.06969, arXiv.org, revised Apr 2025.
    19. Jiaming Mao & Jingzhi Xu, 2020. "Ensemble Learning with Statistical and Structural Models," Papers 2006.05308, arXiv.org.
    20. Jason Poulos & Shuxi Zeng, 2021. "RNN‐based counterfactual prediction, with an application to homestead policy and public schooling," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(4), pages 1124-1139, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:192:y:2025:i:c:s0965856424004178. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.