IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v194y2025ics0965856425000552.html
   My bibliography  Save this article

Time-evolving graph-based approach for multi-ship encounter analysis: Insights into ship behavior across different scenario complexity levels

Author

Listed:
  • Yu, Yuerong
  • Liu, Kezhong
  • Kong, Wei
  • Xin, Xuri

Abstract

Maritime traffic management confronts significant challenges in understanding multi-ship encounter dynamics, particularly in busy waterways. Despite extensive research, the intricate ship behavior patterns and traffic complexity remain insufficiently explored. This study proposes an innovative time-evolving graph-based approach to systematically decompose and analyze multi-ship encounters. Firstly, we employ classical collision risk indicators—Distance to Closest Point of Approach (DCPA), Time to Closest Point of Approach (TCPA), and Relative Distance (RD)—to detect all ship pairs exhibiting encounter relationships. Subsequently, a novel Find-Verify-and-Fix (FVF)-based clustering algorithm is designed to transform sequential two-ship encounters into multi-ship scenarios, capturing the dynamics of ship interactions and their spatiotemporal interference characteristics through evolutionary topology graphs. Furthermore, we integrate a matrix energy model from graph theory with an improved k-means clustering method to assess the complexity level of multi-ship encounters, facilitating an in-depth examination of the key factors contributing to high complexity. Finally, a detailed correlation analysis is conducted to explore the relationship between ship behavior patterns and different complexity levels of encounter scenarios. Experimental analysis using Automatic Identification System (AIS) data from Ningbo-Zhoushan Port reveals critical insights into maritime traffic dynamics. Results demonstrate that factors such as the number of ships and changes in ship topology over time significantly influence traffic complexity. Key findings highlight that in multi-ship encounter scenarios, ships collectively exhibit a relatively conservative behavior pattern, maintaining both a constant speed and steady course. As scenario complexity increases, ships demonstrate adaptive behaviors—notably reduced average speeds and increased turning frequencies, with a particular tendency towards starboard turns. These results will assist traffic management authorities in providing a scientific basis for decision-making, thereby optimizing navigational safety policies.

Suggested Citation

  • Yu, Yuerong & Liu, Kezhong & Kong, Wei & Xin, Xuri, 2025. "Time-evolving graph-based approach for multi-ship encounter analysis: Insights into ship behavior across different scenario complexity levels," Transportation Research Part A: Policy and Practice, Elsevier, vol. 194(C).
  • Handle: RePEc:eee:transa:v:194:y:2025:i:c:s0965856425000552
    DOI: 10.1016/j.tra.2025.104427
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856425000552
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2025.104427?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    --->

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiaoyu Cai & Qiongli Jing & Bo Peng & Yuanyuan Zhang & Yuting Wang & Ju Tang & Luis J. Yebra, 2022. "Automatic Traffic State Recognition Based on Video Features Extracted by an Autoencoder," Mathematical Problems in Engineering, Hindawi, vol. 2022, pages 1-13, March.
    2. Gao, Dawei & Zhu, Yongsheng & Yan, Ke & Soares, C. Guedes, 2024. "Deep learning–based framework for regional risk assessment in a multi–ship encounter situation based on the transformer network," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    3. Fan, Shiqi & Yang, Zaili, 2022. "Safety and security co-analysis in transport systems: Current state and regulatory development," Transportation Research Part A: Policy and Practice, Elsevier, vol. 166(C), pages 369-388.
    4. Zhang, Jinfen & Liu, Jiongjiong & Hirdaris, Spyros & Zhang, Mingyang & Tian, Wuliu, 2023. "An interpretable knowledge-based decision support method for ship collision avoidance using AIS data," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    5. Zhang, Mingyang & Zhang, Di & Fu, Shanshan & Kujala, Pentti & Hirdaris, Spyros, 2022. "A predictive analytics method for maritime traffic flow complexity estimation in inland waterways," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    6. Gil, Mateusz & Kozioł, Paweł & Wróbel, Krzysztof & Montewka, Jakub, 2022. "Know your safety indicator – A determination of merchant vessels Bow Crossing Range based on big data analytics," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    7. Ryan, Cian & Murphy, Finbarr & Mullins, Martin, 2020. "Spatial risk modelling of behavioural hotspots: Risk-aware path planning for autonomous vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 134(C), pages 152-163.
    8. Manley, Ed & Cheng, Tao, 2018. "Exploring the role of spatial cognition in predicting urban traffic flow through agent-based modelling," Transportation Research Part A: Policy and Practice, Elsevier, vol. 109(C), pages 14-23.
    9. Tobias Rye Torben & Jon Arne Glomsrud & Tom Arne Pedersen & Ingrid B Utne & Asgeir J Sørensen, 2023. "Automatic simulation-based testing of autonomous ships using Gaussian processes and temporal logic," Journal of Risk and Reliability, , vol. 237(2), pages 293-313, April.
    10. Yu, Yuerong & Liu, Kezhong & Fu, Shanshan & Chen, Jihong, 2024. "Framework for process risk analysis of maritime accidents based on resilience theory: A case study of grounding accidents in Arctic waters," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    11. Szłapczyński, Rafał & Szłapczyńska, Joanna & Gil, Mateusz & Życzkowski, Marcin & Montewka, Jakub, 2024. "Holistic collision avoidance decision support system for watchkeeping deck officers," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    12. Li, Huanhuan & Xing, Wenbin & Jiao, Hang & Yang, Zaili & Li, Yan, 2024. "Deep bi-directional information-empowered ship trajectory prediction for maritime autonomous surface ships," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 181(C).
    13. Xin, Xuri & Liu, Kezhong & Loughney, Sean & Wang, Jin & Yang, Zaili, 2023. "Maritime traffic clustering to capture high-risk multi-ship encounters in complex waters," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    14. Xin, Xuri & Liu, Kezhong & Yang, Zaili & Zhang, Jinfen & Wu, Xiaolie, 2021. "A probabilistic risk approach for the collision detection of multi-ships under spatiotemporal movement uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    15. Du, Lei & Banda, Osiris A. Valdez & Huang, Yamin & Goerlandt, Floris & Kujala, Pentti & Zhang, Weibin, 2021. "An empirical ship domain based on evasive maneuver and perceived collision risk," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    16. Li, Weijun & Bai, Xiwen & Yang, Dong & Hou, Yao, 2023. "Maritime connectivity, transport infrastructure expansion and economic growth: A global perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 170(C).
    17. Wang, Yuhong & Cullinane, Kevin, 2014. "Traffic consolidation in East Asian container ports: A network flow analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 61(C), pages 152-163.
    18. Zhang, Mingyang & Taimuri, Ghalib & Zhang, Jinfen & Zhang, Di & Yan, Xinping & Kujala, Pentti & Hirdaris, Spyros, 2025. "Systems driven intelligent decision support methods for ship collision and grounding prevention: Present status, possible solutions, and challenges," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xin, Xuri & Cao, Yuhao & Jarumaneeroj, Pisit & Yang, Zaili, 2025. "Vulnerability assessment of International Container Shipping Networks under national-level restriction policies," Transport Policy, Elsevier, vol. 167(C), pages 191-209.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Jiongjiong & Zhang, Jinfen & Yang, Zaili & Wan, Chengpeng & Zhang, Mingyang, 2024. "A novel data-driven method of ship collision risk evolution evaluation during real encounter situations," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    2. Xin, Xuri & Liu, Kezhong & Loughney, Sean & Wang, Jin & Li, Huanhuan & Ekere, Nduka & Yang, Zaili, 2023. "Multi-scale collision risk estimation for maritime traffic in complex port waters," Reliability Engineering and System Safety, Elsevier, vol. 240(C).
    3. Zhang, Mingyang & Taimuri, Ghalib & Zhang, Jinfen & Zhang, Di & Yan, Xinping & Kujala, Pentti & Hirdaris, Spyros, 2025. "Systems driven intelligent decision support methods for ship collision and grounding prevention: Present status, possible solutions, and challenges," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    4. Zhang, Mingyang & Kujala, Pentti & Hirdaris, Spyros, 2022. "A machine learning method for the evaluation of ship grounding risk in real operational conditions," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    5. Gil, Mateusz & Montewka, Jakub & Krata, Przemysław, 2025. "Predicting a passenger ship's response during evasive maneuvers using Bayesian Learning," Reliability Engineering and System Safety, Elsevier, vol. 256(C).
    6. Xin, Xuri & Liu, Kezhong & Loughney, Sean & Wang, Jin & Yang, Zaili, 2023. "Maritime traffic clustering to capture high-risk multi-ship encounters in complex waters," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    7. Mauro, Francesco & Vassalos, Dracos & Paterson, Donald, 2022. "Critical damages identification in a multi-level damage stability assessment framework for passenger ships," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    8. Ruponen, Pekka & Montewka, Jakub & Tompuri, Markus & Manderbacka, Teemu & Hirdaris, Spyros, 2022. "A framework for onboard assessment and monitoring of flooding risk due to open watertight doors for passenger ships," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    9. Zhang, Jinfen & Liu, Jiongjiong & Hirdaris, Spyros & Zhang, Mingyang & Tian, Wuliu, 2023. "An interpretable knowledge-based decision support method for ship collision avoidance using AIS data," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    10. Gao, Dawei & Zhu, Yongsheng & Guedes Soares, C., 2023. "Uncertainty modelling and dynamic risk assessment for long-sequence AIS trajectory based on multivariate Gaussian Process," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    11. Sui, Zhongyi & Wang, Shuaian, 2025. "Traffic advisory for ship encounter situation based on linear dynamic system," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    12. Gil, Mateusz & Kozioł, Paweł & Wróbel, Krzysztof & Montewka, Jakub, 2022. "Know your safety indicator – A determination of merchant vessels Bow Crossing Range based on big data analytics," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    13. Wang, Miaomiao & Wang, Yanfu & Ding, Jie & Yu, Weizhe, 2024. "Interaction aware and multi-modal distribution for ship trajectory prediction with spatio-temporal crisscross hybrid network," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    14. Li, Mengxia & Mou, Junmin & Chen, Pengfei & Rong, Hao & Chen, Linying & van Gelder, P.H.A.J.M., 2022. "Towards real-time ship collision risk analysis: An improved R-TCR model considering target ship motion uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    15. Hörteborn, Axel & Ringsberg, Jonas W. & Lundbäck, Olov & Mao, Wengang, 2025. "Probabilistic analysis of ship-bridge allisions when designing bridges," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
    16. Gan, Langxiong & Gao, Ziyi & Zhang, Xiyu & Xu, Yi & Liu, Ryan Wen & Xie, Cheng & Shu, Yaqing, 2025. "Graph neural networks enabled accident causation prediction for maritime vessel traffic," Reliability Engineering and System Safety, Elsevier, vol. 257(PA).
    17. Mazurek, J. & Lu, L. & Krata, P. & Montewka, J. & Krata, H. & Kujala, P., 2022. "An updated method identifying collision-prone locations for ships. A case study for oil tankers navigating in the Gulf of Finland," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    18. Yoon, Junghyun & Lee, Hee Yong & Dinwoodie, John, 2015. "Competitiveness of container terminal operating companies in South Korea and the industry–university–government network," Transportation Research Part A: Policy and Practice, Elsevier, vol. 80(C), pages 1-14.
    19. Monika Blišťanová & Peter Koščák & Michaela Tirpáková & Magdaléna Ondicová, 2023. "A Cross-Comparative Analysis of Transportation Safety Research," Sustainability, MDPI, vol. 15(9), pages 1-14, May.
    20. Wang, Yuhong & Li, Pengchang & Hong, Cheng & Yang, Zaili, 2025. "Causation analysis of ship collisions using a TM-FRAM model," Reliability Engineering and System Safety, Elsevier, vol. 260(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:194:y:2025:i:c:s0965856425000552. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.