IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v194y2025ics096585642500059x.html
   My bibliography  Save this article

On measuring walking accessibility: A link-based utility approach

Author

Listed:
  • Liang, Zheng
  • Lo, Hong K.
  • Ng, Ka Fai
  • Axhausen, Kay W.

Abstract

This study formulates a measure of walking accessibility that takes into account the impacts of seven street-level walking attributes, including sidewalk length, footbridge, staircases, at-grade crosswalk, tunnel, ramp, and escalators based on the random utility theory. We integrate the measure with the link-based recursive logit model, which is calibrated with revealed route choice data collected through an unobtrusive pedestrian following survey. This link-based walking accessibility measure does not require knowledge of the path sets, and hence can provide an unbiased accessibility assessment independent of path choice generation. We apply this approach to analyze the performance of walking accessibility to the Kwun Tong Mass Transit Railway station in Hong Kong as a case study. The proposed approach can be used as a practical tool to identify areas with deficient walking accessibility that need improvement and to forecast the expected outcome of any improvement schemes without bias.

Suggested Citation

  • Liang, Zheng & Lo, Hong K. & Ng, Ka Fai & Axhausen, Kay W., 2025. "On measuring walking accessibility: A link-based utility approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 194(C).
  • Handle: RePEc:eee:transa:v:194:y:2025:i:c:s096585642500059x
    DOI: 10.1016/j.tra.2025.104431
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096585642500059X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2025.104431?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    --->

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Reid Ewing & Robert Cervero, 2010. "Travel and the Built Environment," Journal of the American Planning Association, Taylor & Francis Journals, vol. 76(3), pages 265-294.
    2. Neatt, Kevin & Millward, Hugh & Spinney, Jamie, 2017. "Neighborhood walking densities: A multivariate analysis in Halifax, Canada," Journal of Transport Geography, Elsevier, vol. 61(C), pages 9-16.
    3. Schmid, Basil & Jokubauskaite, Simona & Aschauer, Florian & Peer, Stefanie & Hössinger, Reinhard & Gerike, Regine & Jara-Diaz, Sergio R. & Axhausen, Kay W., 2019. "A pooled RP/SP mode, route and destination choice model to investigate mode and user-type effects in the value of travel time savings," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 262-294.
    4. Li, W. & Procter-Gray, E. & Lipsitz, L.A. & Leveille, S.G. & Hackman, H. & Biondolillo, M. & Hannan, M.T., 2014. "Utilitarian walking, neighborhood environment, and risk of outdoor falls among older adults," American Journal of Public Health, American Public Health Association, vol. 104(9), pages 30-37.
    5. Manout, Ouassim & Bonnel, Patrick & Bouzouina, Louafi, 2018. "Transit accessibility: A new definition of transit connectors," Transportation Research Part A: Policy and Practice, Elsevier, vol. 113(C), pages 88-100.
    6. Jang, Seongman & Lee, Seungil, 2020. "Study of the regional accessibility calculation by income class based on utility-based accessibility," Journal of Transport Geography, Elsevier, vol. 84(C).
    7. Guo, Zhan & Loo, Becky P.Y., 2013. "Pedestrian environment and route choice: evidence from New York City and Hong Kong," Journal of Transport Geography, Elsevier, vol. 28(C), pages 124-136.
    8. Shatu, Farjana & Yigitcanlar, Tan, 2018. "Development and validity of a virtual street walkability audit tool for pedestrian route choice analysis—SWATCH," Journal of Transport Geography, Elsevier, vol. 70(C), pages 148-160.
    9. Anciaes, Paulo & Jones, Peter, 2020. "A comprehensive approach for the appraisal of the barrier effect of roads on pedestrians," Transportation Research Part A: Policy and Practice, Elsevier, vol. 134(C), pages 227-250.
    10. Eric J. Miller, 2018. "Accessibility: measurement and application in transportation planning," Transport Reviews, Taylor & Francis Journals, vol. 38(5), pages 551-555, September.
    11. de Jong, Gerard & Daly, Andrew & Pieters, Marits & van der Hoorn, Toon, 2007. "The logsum as an evaluation measure: Review of the literature and new results," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(9), pages 874-889, November.
    12. Lars Böcker & Martin Dijst & Jan Prillwitz, 2013. "Impact of Everyday Weather on Individual Daily Travel Behaviours in Perspective: A Literature Review," Transport Reviews, Taylor & Francis Journals, vol. 33(1), pages 71-91, January.
    13. Nassir, Neema & Hickman, Mark & Malekzadeh, Ali & Irannezhad, Elnaz, 2016. "A utility-based travel impedance measure for public transit network accessibility," Transportation Research Part A: Policy and Practice, Elsevier, vol. 88(C), pages 26-39.
    14. Gregory S Macfarlane & Nico Boyd & John E Taylor & Kari Watkins, 2021. "Modeling the impacts of park access on health outcomes: A utility-based accessibility approach," Environment and Planning B, , vol. 48(8), pages 2289-2306, October.
    15. Liu, Jiaqi & Liang, Zheng & Huai, Yue & Lo, Hong K., 2025. "Investigating utility-based walking accessibility: New versus old development areas in Hong Kong," Transport Policy, Elsevier, vol. 165(C), pages 97-106.
    16. Fosgerau, Mogens & Frejinger, Emma & Karlstrom, Anders, 2013. "A link based network route choice model with unrestricted choice set," Transportation Research Part B: Methodological, Elsevier, vol. 56(C), pages 70-80.
    17. Julian Arellana & María Saltarín & Ana Margarita Larrañaga & Vilma Alvarez & César Augusto Henao, 2020. "Urban walkability considering pedestrians’ perceptions of the built environment: a 10-year review and a case study in a medium-sized city in Latin America," Transport Reviews, Taylor & Francis Journals, vol. 40(2), pages 183-203, March.
    18. Moiseeva, Anastasia & Timmermans, Harry, 2010. "Imputing relevant information from multi-day GPS tracers for retail planning and management using data fusion and context-sensitive learning," Journal of Retailing and Consumer Services, Elsevier, vol. 17(3), pages 189-199.
    19. Liu, Yanan & Yang, Dujuan & Timmermans, Harry J.P. & de Vries, Bauke, 2020. "Analysis of the impact of street-scale built environment design near metro stations on pedestrian and cyclist road segment choice: A stated choice experiment," Journal of Transport Geography, Elsevier, vol. 82(C).
    20. Andrew Clark & Darren Scott & Nikolaos Yiannakoulias, 2014. "Examining the relationship between active travel, weather, and the built environment: a multilevel approach using a GPS-enhanced dataset," Transportation, Springer, vol. 41(2), pages 325-338, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Demitiry, Maria & Higgins, Christopher D. & Páez, Antonio & Miller, Eric J., 2022. "Accessibility to primary care physicians: Comparing floating catchments with a utility-based approach," Journal of Transport Geography, Elsevier, vol. 101(C).
    2. Ahmad Adeel & Bruno Notteboom & Ansar Yasar & Kris Scheerlinck & Jeroen Stevens, 2021. "Sustainable Streetscape and Built Environment Designs around BRT Stations: A Stated Choice Experiment Using 3D Visualizations," Sustainability, MDPI, vol. 13(12), pages 1-21, June.
    3. Arellana, Julián & Alvarez, Vilma & Oviedo, Daniel & Guzman, Luis A., 2021. "Walk this way: Pedestrian accessibility and equity in Barranquilla and Soledad, Colombia," Research in Transportation Economics, Elsevier, vol. 86(C).
    4. Gan, Zuoxian & Yang, Min & Zeng, Qingcheng & Timmermans, Harry J.P., 2021. "Associations between built environment, perceived walkability/bikeability and metro transfer patterns," Transportation Research Part A: Policy and Practice, Elsevier, vol. 153(C), pages 171-187.
    5. Rao, Fujie & Pafka, Elek, 2021. "Shopping morphologies of urban transit station areas: A comparative study of central city station catchments in Toronto, San Francisco, and Melbourne," Journal of Transport Geography, Elsevier, vol. 96(C).
    6. Shatu, Farjana & Yigitcanlar, Tan & Bunker, Jonathan, 2019. "Objective vs. subjective measures of street environments in pedestrian route choice behaviour: Discrepancy and correlates of non-concordance," Transportation Research Part A: Policy and Practice, Elsevier, vol. 126(C), pages 1-23.
    7. Guzman, Luis A. & Cantillo-Garcia, Victor A. & Oviedo, Daniel & Arellana, Julian, 2023. "How much is accessibility worth? Utility-based accessibility to evaluate transport policies," Journal of Transport Geography, Elsevier, vol. 112(C).
    8. Hong, Jinhyun & Philip McArthur, David & Stewart, Joanna L., 2020. "Can providing safe cycling infrastructure encourage people to cycle more when it rains? The use of crowdsourced cycling data (Strava)," Transportation Research Part A: Policy and Practice, Elsevier, vol. 133(C), pages 109-121.
    9. Sharmin, Samia & Kamruzzaman, Md. & Haque, Md Mazharul, 2020. "The impact of topological properties of built environment on children independent mobility: A comparative study between discretionary vs. nondiscretionary trips in Dhaka," Journal of Transport Geography, Elsevier, vol. 83(C).
    10. Arellana, Julián & Saltarín, María & Larrañaga, Ana Margarita & González, Virginia I. & Henao, César Augusto, 2020. "Developing an urban bikeability index for different types of cyclists as a tool to prioritise bicycle infrastructure investments," Transportation Research Part A: Policy and Practice, Elsevier, vol. 139(C), pages 310-334.
    11. Guan, Xiaodong & Wang, Donggen, 2019. "Influences of the built environment on travel: A household-based perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 710-724.
    12. Lorea Mendiola & Pilar González, 2021. "Urban Development and Sustainable Mobility: A Spatial Analysis in the Buenos Aires Metropolitan Area," Land, MDPI, vol. 10(2), pages 1-23, February.
    13. Feuillet, T. & Commenges, H. & Menai, M. & Salze, P. & Perchoux, C. & Reuillon, R. & Kesse-Guyot, E. & Enaux, C. & Nazare, J.-A. & Hercberg, S. & Simon, C. & Charreire, H. & Oppert, J.M., 2018. "A massive geographically weighted regression model of walking-environment relationships," Journal of Transport Geography, Elsevier, vol. 68(C), pages 118-129.
    14. Mingzhu Song & Yi Zhang & Meng Li & Yi Zhang, 2021. "Accessibility of Transit Stops with Multiple Feeder Modes: Walking and Private-Bike Cycling," Sustainability, MDPI, vol. 13(6), pages 1-27, March.
    15. Naznin Sultana Daisy & Lei Liu & Hugh Millward, 2020. "Trip chaining propensity and tour mode choice of out-of-home workers: evidence from a mid-sized Canadian city," Transportation, Springer, vol. 47(2), pages 763-792, April.
    16. Yuan, Dandan & Zhao, Pengjun & Yu, Zhao & Liu, Qiyang, 2023. "Villagers' travel burden and the built environment in rural China: Evidence from a national level survey," Journal of Transport Geography, Elsevier, vol. 113(C).
    17. Eldeeb, Gamal & Mohamed, Moataz & Páez, Antonio, 2021. "Built for active travel? Investigating the contextual effects of the built environment on transportation mode choice," Journal of Transport Geography, Elsevier, vol. 96(C).
    18. Yang, Wei & Hu, Jie & Liu, Yong & Guo, Wenbo, 2023. "Examining the influence of neighborhood and street-level built environment on fitness jogging in Chengdu, China: A massive GPS trajectory data analysis," Journal of Transport Geography, Elsevier, vol. 108(C).
    19. Mohammad Nurul Hassan & Taha Hossein Rashidi & Neema Nassir, 2021. "Consideration of different travel strategies and choice set sizes in transit path choice modelling," Transportation, Springer, vol. 48(2), pages 723-746, April.
    20. (Melrose) Pan, Meiyu & Dahal, Pankaj & Lim, Hyeonsup & Pandey, Birat, 2025. "Geospatial analysis of freight accessibility and job attraction: The role of interstate ramps, airports, ports, and rail," Journal of Transport Geography, Elsevier, vol. 123(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:194:y:2025:i:c:s096585642500059x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.