Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1994 Dec 1;304(Pt 2):377–383. doi: 10.1042/bj3040377

Mastoparan may activate GTP hydrolysis by Gi-proteins in HL-60 membranes indirectly through interaction with nucleoside diphosphate kinase.

J F Klinker 1, A Hagelüken 1, L Grünbaum 1, I Heilmann 1, B Nürnberg 1, R Harhammer 1, S Offermanns 1, I Schwaner 1, J Ervens 1, K Wenzel-Seifert 1, et al.
PMCID: PMC1137504  PMID: 7998971

Abstract

The wasp venom, mastoparan (MP), activates reconstituted pertussis toxin (PTX)-sensitive G-proteins in a receptor-independent manner. We studied the effects of MP and its analogue, mastoparan 7 (MP 7), on G-protein activation in HL-60 cells and a reconstituted system and on nucleoside diphosphate kinase (NDPK)-catalysed GTP formation. MP activated high-affinity GTP hydrolysis in HL-60 membranes with an EC50 of 1-2 microM and a maximum at 10 microM. Unlike the effects of the formyl peptide receptor agonist, N-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMet-Leu-Phe), on GTPase, those of MP were only partially PTX-sensitive. MP-induced rises in cytosolic Ca2+ concentration and superoxide-anion formation in intact HL-60 cells were also only incompletely PTX-sensitive. N-Ethylmaleimide inhibited MP-stimulated GTP hydrolysis to a greater extent than that stimulated by fMet-Leu-Phe. Unlike the latter, MP did not enhance incorporation of GTP azidoanilide into, and cholera toxin-catalysed ADP-ribosylation of, Gi-protein alpha-subunits in HL-60 membranes. By contrast to fMet-Leu-Phe, MP did not or only weakly stimulated binding of guanosine 5'-[gamma-thio]triphosphate to Gi-protein alpha-subunits. MP 7 was considerably more effective than MP at activating the GTPase of reconstituted Gi/G(o)-proteins, whereas in HL-60 membranes, MP and MP 7 were similarly effective. MP and MP 7 were similarly effective at activating [3H]GTP formation from [3H]GDP and GTP in HL-60 membranes and by NDPK purified from bovine liver mitochondria. Our data suggest the following: (1) MP activates Gi-proteins in HL-60 cells, but (2) the venom does not simply mimic receptor activation. (3) MP and MP 7 may activate GTP hydrolysis in HL-60 membranes indirectly through interaction with NDPK. (4) MP 7 is a more effective direct activator of PTX-sensitive G-proteins than MP, whereas with regard to NDPK, MP and MP 7 are similarly effective.

Full text

PDF
377

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cassel D., Pfeuffer T. Mechanism of cholera toxin action: covalent modification of the guanyl nucleotide-binding protein of the adenylate cyclase system. Proc Natl Acad Sci U S A. 1978 Jun;75(6):2669–2673. doi: 10.1073/pnas.75.6.2669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Danilenko M., Worland P., Carlson B., Sausville E. A., Sharoni Y. Selective effects of mastoparan analogs: separation of G-protein-directed and membrane-perturbing activities. Biochem Biophys Res Commun. 1993 Nov 15;196(3):1296–1302. doi: 10.1006/bbrc.1993.2393. [DOI] [PubMed] [Google Scholar]
  3. Denker B. M., Tempst P., Neer E. J. Characterization of a mastoparan-stimulated nucleotidase from bovine brain. Biochem J. 1991 Sep 1;278(Pt 2):341–345. doi: 10.1042/bj2780341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Glaze R. P., Wadkins C. L. Properties of a nucleoside diphosphokinase from liver mitochondria and its relationship to the adenosine triphosphate-adenosine diphosphate exchange reaction. J Biol Chem. 1967 May 10;242(9):2139–2150. [PubMed] [Google Scholar]
  5. Gusovsky F., Soergel D. G., Daly J. W. Effects of mastoparan and related peptides on phosphoinositide breakdown in HL-60 cells and cell-free preparations. Eur J Pharmacol. 1991 Apr 25;206(4):309–314. doi: 10.1016/0922-4106(91)90115-x. [DOI] [PubMed] [Google Scholar]
  6. Hagelüken A., Grünbaum L., Nürnberg B., Harhammer R., Schunack W., Seifert R. Lipophilic beta-adrenoceptor antagonists and local anesthetics are effective direct activators of G-proteins. Biochem Pharmacol. 1994 May 18;47(10):1789–1795. doi: 10.1016/0006-2952(94)90307-7. [DOI] [PubMed] [Google Scholar]
  7. Higashijima T., Burnier J., Ross E. M. Regulation of Gi and Go by mastoparan, related amphiphilic peptides, and hydrophobic amines. Mechanism and structural determinants of activity. J Biol Chem. 1990 Aug 25;265(24):14176–14186. [PubMed] [Google Scholar]
  8. Higashijima T., Uzu S., Nakajima T., Ross E. M. Mastoparan, a peptide toxin from wasp venom, mimics receptors by activating GTP-binding regulatory proteins (G proteins). J Biol Chem. 1988 May 15;263(14):6491–6494. [PubMed] [Google Scholar]
  9. Joyce-Brady M., Rubins J. B., Panchenko M. P., Bernardo J., Steele M. P., Kolm L., Simons E. R., Dickey B. F. Mechanisms of mastoparan-stimulated surfactant secretion from isolated pulmonary alveolar type 2 cells. J Biol Chem. 1991 Apr 15;266(11):6859–6865. [PubMed] [Google Scholar]
  10. Kikkawa S., Takahashi K., Takahashi K., Shimada N., Ui M., Kimura N., Katada T. Activation of nucleoside diphosphate kinase by mastoparan, a peptide isolated from wasp venom. FEBS Lett. 1992 Jul 6;305(3):237–240. doi: 10.1016/0014-5793(92)80676-8. [DOI] [PubMed] [Google Scholar]
  11. Klinker J. F., Höer A., Schwaner I., Offermanns S., Wenzel-Seifert K., Seifert R. Lipopeptides activate Gi-proteins in dibutyryl cyclic AMP-differentiated HL-60 cells. Biochem J. 1993 Nov 15;296(Pt 1):245–251. doi: 10.1042/bj2960245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Knaus U. G., Heyworth P. G., Kinsella B. T., Curnutte J. T., Bokoch G. M. Purification and characterization of Rac 2. A cytosolic GTP-binding protein that regulates human neutrophil NADPH oxidase. J Biol Chem. 1992 Nov 25;267(33):23575–23582. [PubMed] [Google Scholar]
  13. Koch G., Haberman B., Mohr C., Just I., Aktories K. Interaction of mastoparan with the low molecular mass GTP-binding proteins rho/rac. FEBS Lett. 1991 Oct 21;291(2):336–340. doi: 10.1016/0014-5793(91)81315-y. [DOI] [PubMed] [Google Scholar]
  14. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  15. Lacombe M. L., Jakobs K. H. Nucleoside diphosphate kinases as potential new targets for control of development and cancer. Trends Pharmacol Sci. 1992 Feb;13(2):46–48. doi: 10.1016/0165-6147(92)90020-7. [DOI] [PubMed] [Google Scholar]
  16. Ligeti E., Pizon V., Wittinghofer A., Gierschik P., Jakobs K. H. GTPase activity of small GTP-binding proteins in HL-60 membranes is stimulated by arachidonic acid. Eur J Biochem. 1993 Sep 15;216(3):813–820. doi: 10.1111/j.1432-1033.1993.tb18202.x. [DOI] [PubMed] [Google Scholar]
  17. Mousli M., Bronner C., Landry Y., Bockaert J., Rouot B. Direct activation of GTP-binding regulatory proteins (G-proteins) by substance P and compound 48/80. FEBS Lett. 1990 Jan 1;259(2):260–262. doi: 10.1016/0014-5793(90)80023-c. [DOI] [PubMed] [Google Scholar]
  18. Nakahata N., Abe M. T., Matsuoka I., Nakanishi H. Mastoparan inhibits phosphoinositide hydrolysis via pertussis toxin-insensitive [corrected] G-protein in human astrocytoma cells. FEBS Lett. 1990 Jan 15;260(1):91–94. doi: 10.1016/0014-5793(90)80074-s. [DOI] [PubMed] [Google Scholar]
  19. Norgauer J., Eberle M., Lemke H. D., Aktories K. Activation of human neutrophils by mastoparan. Reorganization of the cytoskeleton, formation of phosphatidylinositol 3,4,5-trisphosphate, secretion up-regulation of complement receptor type 3 and superoxide anion production are stimulated by mastoparan. Biochem J. 1992 Mar 1;282(Pt 2):393–397. doi: 10.1042/bj2820393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Nürnberg B., Spicher K., Harhammer R., Bosserhoff A., Frank R., Hilz H., Schultz G. Purification of a novel G-protein alpha 0-subtype from mammalian brain. Biochem J. 1994 Jun 1;300(Pt 2):387–394. doi: 10.1042/bj3000387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Offermanns S., Schultz G., Rosenthal W. Identification of receptor-activated G proteins with photoreactive GTP analog, [alpha-32P]GTP azidoanilide. Methods Enzymol. 1991;195:286–301. doi: 10.1016/0076-6879(91)95174-i. [DOI] [PubMed] [Google Scholar]
  22. Offermanns S., Seifert R., Metzger J. W., Jung G., Lieberknecht A., Schmidt U., Schultz G. Lipopeptides are effective stimulators of tyrosine phosphorylation in human myeloid cells. Biochem J. 1992 Mar 1;282(Pt 2):551–557. doi: 10.1042/bj2820551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Otero A. D. Transphosphorylation and G protein activation. Biochem Pharmacol. 1990 May 1;39(9):1399–1404. doi: 10.1016/0006-2952(90)90420-p. [DOI] [PubMed] [Google Scholar]
  24. Perianin A., Snyderman R. Mastoparan, a wasp venom peptide, identifies two discrete mechanisms for elevating cytosolic calcium and inositol trisphosphates in human polymorphonuclear leukocytes. J Immunol. 1989 Sep 1;143(5):1669–1673. [PubMed] [Google Scholar]
  25. Raynor R. L., Kim Y. S., Zheng B., Vogler W. R., Kuo J. F. Membrane interactions of mastoparan analogues related to their differential effects on protein kinase C, Na, K-ATPase and HL60 cells. FEBS Lett. 1992 Aug 3;307(3):275–279. doi: 10.1016/0014-5793(92)80694-c. [DOI] [PubMed] [Google Scholar]
  26. Rosenthal W., Koesling D., Rudolph U., Kleuss C., Pallast M., Yajima M., Schultz G. Identification and characterization of the 35-kDa beta subunit of guanine-nucleotide-binding proteins by an antiserum raised against transducin. Eur J Biochem. 1986 Jul 15;158(2):255–263. doi: 10.1111/j.1432-1033.1986.tb09745.x. [DOI] [PubMed] [Google Scholar]
  27. Sawai T., Asada M., Nunoi H., Matsuda I., Ando S., Sasaki T., Kaibuchi K., Takai Y., Katayama K. Combination of arachidonic acid and guanosine 5'-O-(3-thiotriphosphate) induce translocation of rac p21s to membrane and activation of NADPH oxidase in a cell-free system. Biochem Biophys Res Commun. 1993 Aug 31;195(1):264–269. doi: 10.1006/bbrc.1993.2039. [DOI] [PubMed] [Google Scholar]
  28. Seifert R., Burde R., Schultz G. Activation of NADPH oxidase by purine and pyrimidine nucleotides involves G proteins and is potentiated by chemotactic peptides. Biochem J. 1989 May 1;259(3):813–819. doi: 10.1042/bj2590813. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Seifert R., Hagelüken A., Höer A., Höer D., Grünbaum L., Offermanns S., Schwaner I., Zingel V., Schunack W., Schultz G. The H1 receptor agonist 2-(3-chlorophenyl)histamine activates Gi proteins in HL-60 cells through a mechanism that is independent of known histamine receptor subtypes. Mol Pharmacol. 1994 Apr;45(4):578–586. [PubMed] [Google Scholar]
  30. Seifert R., Höer A., Offermanns S., Buschauer A., Schunack W. Histamine increases cytosolic Ca2+ in dibutyryl-cAMP-differentiated HL-60 cells via H1 receptors and is an incomplete secretagogue. Mol Pharmacol. 1992 Aug;42(2):227–234. [PubMed] [Google Scholar]
  31. Seifert R., Rosenthal W., Schultz G., Wieland T., Gierschick P., Jakobs K. H. The role of nucleoside-diphosphate kinase reactions in G protein activation of NADPH oxidase by guanine and adenine nucleotides. Eur J Biochem. 1988 Jul 15;175(1):51–55. doi: 10.1111/j.1432-1033.1988.tb14165.x. [DOI] [PubMed] [Google Scholar]
  32. Seifert R., Schultz G. Reversible activation of NADPH oxidase in membranes of HL-60 human leukemic cells. Biochem Biophys Res Commun. 1987 Aug 14;146(3):1296–1302. doi: 10.1016/0006-291x(87)90790-x. [DOI] [PubMed] [Google Scholar]
  33. Seifert R., Schultz G., Richter-Freund M., Metzger J., Wiesmüller K. H., Jung G., Bessler W. G., Hauschildt S. Activation of superoxide formation and lysozyme release in human neutrophils by the synthetic lipopeptide Pam3Cys-Ser-(Lys)4. Involvement of guanine-nucleotide-binding proteins and synergism with chemotactic peptides. Biochem J. 1990 May 1;267(3):795–802. doi: 10.1042/bj2670795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Serra M. C., Bazzoni F., Della Bianca V., Greskowiak M., Rossi F. Activation of human neutrophils by substance P. Effect on oxidative metabolism, exocytosis, cytosolic Ca2+ concentration and inositol phosphate formation. J Immunol. 1988 Sep 15;141(6):2118–2124. [PubMed] [Google Scholar]
  35. Song D. L., Chang G. D., Ho C. L., Chang C. H. Structural requirements of mastoparan for activation of membrane-bound guanylate cyclase. Eur J Pharmacol. 1993 Nov 15;247(3):283–288. doi: 10.1016/0922-4106(93)90196-g. [DOI] [PubMed] [Google Scholar]
  36. Tomita U., Inanobe A., Kobayashi I., Takahashi K., Ui M., Katada T. Direct interactions of mastoparan and compound 48/80 with GTP-binding proteins. J Biochem. 1991 Jan;109(1):184–189. doi: 10.1093/oxfordjournals.jbchem.a123342. [DOI] [PubMed] [Google Scholar]
  37. Walseth T. F., Yuen P. S., Moos M. C., Jr Preparation of alpha-32P-labeled nucleoside triphosphates, nicotinamide adenine dinucleotide, and cyclic nucleotides for use in determining adenylyl and guanylyl cyclases and cyclic nucleotide phosphodiesterase. Methods Enzymol. 1991;195:29–44. doi: 10.1016/0076-6879(91)95152-a. [DOI] [PubMed] [Google Scholar]
  38. Weingarten R., Ransnäs L., Mueller H., Sklar L. A., Bokoch G. M. Mastoparan interacts with the carboxyl terminus of the alpha subunit of Gi. J Biol Chem. 1990 Jul 5;265(19):11044–11049. [PubMed] [Google Scholar]
  39. Wenzel-Seifert K., Seifert R. Cyclosporin H is a potent and selective formyl peptide receptor antagonist. Comparison with N-t-butoxycarbonyl-L-phenylalanyl-L-leucyl-L-phenylalanyl-L- leucyl-L-phenylalanine and cyclosporins A, B, C, D, and E. J Immunol. 1993 May 15;150(10):4591–4599. [PubMed] [Google Scholar]
  40. Wieland T., Jakobs K. H. Evidence for nucleoside diphosphokinase-dependent channeling of guanosine 5'-(gamma-thio)triphosphate to guanine nucleotide-binding proteins. Mol Pharmacol. 1992 Nov;42(5):731–735. [PubMed] [Google Scholar]
  41. Wieland T., Kreiss J., Gierschik P., Jakobs K. H. Role of GDP in formyl-peptide-receptor-induced activation of guanine-nucleotide-binding proteins in membranes of HL 60 cells. Eur J Biochem. 1992 May 1;205(3):1201–1206. doi: 10.1111/j.1432-1033.1992.tb16891.x. [DOI] [PubMed] [Google Scholar]
  42. Wu C. Y., Chen C. F., Chiang C. F. Stimulation of inositol phosphate production and GTPase activity by compound 48/80 in rat peritoneal mast cells. Biochem Biophys Res Commun. 1993 Apr 15;192(1):204–213. doi: 10.1006/bbrc.1993.1401. [DOI] [PubMed] [Google Scholar]
  43. Wu D., LaRosa G. J., Simon M. I. G protein-coupled signal transduction pathways for interleukin-8. Science. 1993 Jul 2;261(5117):101–103. doi: 10.1126/science.8316840. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES