Abstract
The wasp venom, mastoparan (MP), activates reconstituted pertussis toxin (PTX)-sensitive G-proteins in a receptor-independent manner. We studied the effects of MP and its analogue, mastoparan 7 (MP 7), on G-protein activation in HL-60 cells and a reconstituted system and on nucleoside diphosphate kinase (NDPK)-catalysed GTP formation. MP activated high-affinity GTP hydrolysis in HL-60 membranes with an EC50 of 1-2 microM and a maximum at 10 microM. Unlike the effects of the formyl peptide receptor agonist, N-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMet-Leu-Phe), on GTPase, those of MP were only partially PTX-sensitive. MP-induced rises in cytosolic Ca2+ concentration and superoxide-anion formation in intact HL-60 cells were also only incompletely PTX-sensitive. N-Ethylmaleimide inhibited MP-stimulated GTP hydrolysis to a greater extent than that stimulated by fMet-Leu-Phe. Unlike the latter, MP did not enhance incorporation of GTP azidoanilide into, and cholera toxin-catalysed ADP-ribosylation of, Gi-protein alpha-subunits in HL-60 membranes. By contrast to fMet-Leu-Phe, MP did not or only weakly stimulated binding of guanosine 5'-[gamma-thio]triphosphate to Gi-protein alpha-subunits. MP 7 was considerably more effective than MP at activating the GTPase of reconstituted Gi/G(o)-proteins, whereas in HL-60 membranes, MP and MP 7 were similarly effective. MP and MP 7 were similarly effective at activating [3H]GTP formation from [3H]GDP and GTP in HL-60 membranes and by NDPK purified from bovine liver mitochondria. Our data suggest the following: (1) MP activates Gi-proteins in HL-60 cells, but (2) the venom does not simply mimic receptor activation. (3) MP and MP 7 may activate GTP hydrolysis in HL-60 membranes indirectly through interaction with NDPK. (4) MP 7 is a more effective direct activator of PTX-sensitive G-proteins than MP, whereas with regard to NDPK, MP and MP 7 are similarly effective.
Full text
PDF






Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Cassel D., Pfeuffer T. Mechanism of cholera toxin action: covalent modification of the guanyl nucleotide-binding protein of the adenylate cyclase system. Proc Natl Acad Sci U S A. 1978 Jun;75(6):2669–2673. doi: 10.1073/pnas.75.6.2669. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Danilenko M., Worland P., Carlson B., Sausville E. A., Sharoni Y. Selective effects of mastoparan analogs: separation of G-protein-directed and membrane-perturbing activities. Biochem Biophys Res Commun. 1993 Nov 15;196(3):1296–1302. doi: 10.1006/bbrc.1993.2393. [DOI] [PubMed] [Google Scholar]
- Denker B. M., Tempst P., Neer E. J. Characterization of a mastoparan-stimulated nucleotidase from bovine brain. Biochem J. 1991 Sep 1;278(Pt 2):341–345. doi: 10.1042/bj2780341. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Glaze R. P., Wadkins C. L. Properties of a nucleoside diphosphokinase from liver mitochondria and its relationship to the adenosine triphosphate-adenosine diphosphate exchange reaction. J Biol Chem. 1967 May 10;242(9):2139–2150. [PubMed] [Google Scholar]
- Gusovsky F., Soergel D. G., Daly J. W. Effects of mastoparan and related peptides on phosphoinositide breakdown in HL-60 cells and cell-free preparations. Eur J Pharmacol. 1991 Apr 25;206(4):309–314. doi: 10.1016/0922-4106(91)90115-x. [DOI] [PubMed] [Google Scholar]
- Hagelüken A., Grünbaum L., Nürnberg B., Harhammer R., Schunack W., Seifert R. Lipophilic beta-adrenoceptor antagonists and local anesthetics are effective direct activators of G-proteins. Biochem Pharmacol. 1994 May 18;47(10):1789–1795. doi: 10.1016/0006-2952(94)90307-7. [DOI] [PubMed] [Google Scholar]
- Higashijima T., Burnier J., Ross E. M. Regulation of Gi and Go by mastoparan, related amphiphilic peptides, and hydrophobic amines. Mechanism and structural determinants of activity. J Biol Chem. 1990 Aug 25;265(24):14176–14186. [PubMed] [Google Scholar]
- Higashijima T., Uzu S., Nakajima T., Ross E. M. Mastoparan, a peptide toxin from wasp venom, mimics receptors by activating GTP-binding regulatory proteins (G proteins). J Biol Chem. 1988 May 15;263(14):6491–6494. [PubMed] [Google Scholar]
- Joyce-Brady M., Rubins J. B., Panchenko M. P., Bernardo J., Steele M. P., Kolm L., Simons E. R., Dickey B. F. Mechanisms of mastoparan-stimulated surfactant secretion from isolated pulmonary alveolar type 2 cells. J Biol Chem. 1991 Apr 15;266(11):6859–6865. [PubMed] [Google Scholar]
- Kikkawa S., Takahashi K., Takahashi K., Shimada N., Ui M., Kimura N., Katada T. Activation of nucleoside diphosphate kinase by mastoparan, a peptide isolated from wasp venom. FEBS Lett. 1992 Jul 6;305(3):237–240. doi: 10.1016/0014-5793(92)80676-8. [DOI] [PubMed] [Google Scholar]
- Klinker J. F., Höer A., Schwaner I., Offermanns S., Wenzel-Seifert K., Seifert R. Lipopeptides activate Gi-proteins in dibutyryl cyclic AMP-differentiated HL-60 cells. Biochem J. 1993 Nov 15;296(Pt 1):245–251. doi: 10.1042/bj2960245. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Knaus U. G., Heyworth P. G., Kinsella B. T., Curnutte J. T., Bokoch G. M. Purification and characterization of Rac 2. A cytosolic GTP-binding protein that regulates human neutrophil NADPH oxidase. J Biol Chem. 1992 Nov 25;267(33):23575–23582. [PubMed] [Google Scholar]
- Koch G., Haberman B., Mohr C., Just I., Aktories K. Interaction of mastoparan with the low molecular mass GTP-binding proteins rho/rac. FEBS Lett. 1991 Oct 21;291(2):336–340. doi: 10.1016/0014-5793(91)81315-y. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lacombe M. L., Jakobs K. H. Nucleoside diphosphate kinases as potential new targets for control of development and cancer. Trends Pharmacol Sci. 1992 Feb;13(2):46–48. doi: 10.1016/0165-6147(92)90020-7. [DOI] [PubMed] [Google Scholar]
- Ligeti E., Pizon V., Wittinghofer A., Gierschik P., Jakobs K. H. GTPase activity of small GTP-binding proteins in HL-60 membranes is stimulated by arachidonic acid. Eur J Biochem. 1993 Sep 15;216(3):813–820. doi: 10.1111/j.1432-1033.1993.tb18202.x. [DOI] [PubMed] [Google Scholar]
- Mousli M., Bronner C., Landry Y., Bockaert J., Rouot B. Direct activation of GTP-binding regulatory proteins (G-proteins) by substance P and compound 48/80. FEBS Lett. 1990 Jan 1;259(2):260–262. doi: 10.1016/0014-5793(90)80023-c. [DOI] [PubMed] [Google Scholar]
- Nakahata N., Abe M. T., Matsuoka I., Nakanishi H. Mastoparan inhibits phosphoinositide hydrolysis via pertussis toxin-insensitive [corrected] G-protein in human astrocytoma cells. FEBS Lett. 1990 Jan 15;260(1):91–94. doi: 10.1016/0014-5793(90)80074-s. [DOI] [PubMed] [Google Scholar]
- Norgauer J., Eberle M., Lemke H. D., Aktories K. Activation of human neutrophils by mastoparan. Reorganization of the cytoskeleton, formation of phosphatidylinositol 3,4,5-trisphosphate, secretion up-regulation of complement receptor type 3 and superoxide anion production are stimulated by mastoparan. Biochem J. 1992 Mar 1;282(Pt 2):393–397. doi: 10.1042/bj2820393. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nürnberg B., Spicher K., Harhammer R., Bosserhoff A., Frank R., Hilz H., Schultz G. Purification of a novel G-protein alpha 0-subtype from mammalian brain. Biochem J. 1994 Jun 1;300(Pt 2):387–394. doi: 10.1042/bj3000387. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Offermanns S., Schultz G., Rosenthal W. Identification of receptor-activated G proteins with photoreactive GTP analog, [alpha-32P]GTP azidoanilide. Methods Enzymol. 1991;195:286–301. doi: 10.1016/0076-6879(91)95174-i. [DOI] [PubMed] [Google Scholar]
- Offermanns S., Seifert R., Metzger J. W., Jung G., Lieberknecht A., Schmidt U., Schultz G. Lipopeptides are effective stimulators of tyrosine phosphorylation in human myeloid cells. Biochem J. 1992 Mar 1;282(Pt 2):551–557. doi: 10.1042/bj2820551. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Otero A. D. Transphosphorylation and G protein activation. Biochem Pharmacol. 1990 May 1;39(9):1399–1404. doi: 10.1016/0006-2952(90)90420-p. [DOI] [PubMed] [Google Scholar]
- Perianin A., Snyderman R. Mastoparan, a wasp venom peptide, identifies two discrete mechanisms for elevating cytosolic calcium and inositol trisphosphates in human polymorphonuclear leukocytes. J Immunol. 1989 Sep 1;143(5):1669–1673. [PubMed] [Google Scholar]
- Raynor R. L., Kim Y. S., Zheng B., Vogler W. R., Kuo J. F. Membrane interactions of mastoparan analogues related to their differential effects on protein kinase C, Na, K-ATPase and HL60 cells. FEBS Lett. 1992 Aug 3;307(3):275–279. doi: 10.1016/0014-5793(92)80694-c. [DOI] [PubMed] [Google Scholar]
- Rosenthal W., Koesling D., Rudolph U., Kleuss C., Pallast M., Yajima M., Schultz G. Identification and characterization of the 35-kDa beta subunit of guanine-nucleotide-binding proteins by an antiserum raised against transducin. Eur J Biochem. 1986 Jul 15;158(2):255–263. doi: 10.1111/j.1432-1033.1986.tb09745.x. [DOI] [PubMed] [Google Scholar]
- Sawai T., Asada M., Nunoi H., Matsuda I., Ando S., Sasaki T., Kaibuchi K., Takai Y., Katayama K. Combination of arachidonic acid and guanosine 5'-O-(3-thiotriphosphate) induce translocation of rac p21s to membrane and activation of NADPH oxidase in a cell-free system. Biochem Biophys Res Commun. 1993 Aug 31;195(1):264–269. doi: 10.1006/bbrc.1993.2039. [DOI] [PubMed] [Google Scholar]
- Seifert R., Burde R., Schultz G. Activation of NADPH oxidase by purine and pyrimidine nucleotides involves G proteins and is potentiated by chemotactic peptides. Biochem J. 1989 May 1;259(3):813–819. doi: 10.1042/bj2590813. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Seifert R., Hagelüken A., Höer A., Höer D., Grünbaum L., Offermanns S., Schwaner I., Zingel V., Schunack W., Schultz G. The H1 receptor agonist 2-(3-chlorophenyl)histamine activates Gi proteins in HL-60 cells through a mechanism that is independent of known histamine receptor subtypes. Mol Pharmacol. 1994 Apr;45(4):578–586. [PubMed] [Google Scholar]
- Seifert R., Höer A., Offermanns S., Buschauer A., Schunack W. Histamine increases cytosolic Ca2+ in dibutyryl-cAMP-differentiated HL-60 cells via H1 receptors and is an incomplete secretagogue. Mol Pharmacol. 1992 Aug;42(2):227–234. [PubMed] [Google Scholar]
- Seifert R., Rosenthal W., Schultz G., Wieland T., Gierschick P., Jakobs K. H. The role of nucleoside-diphosphate kinase reactions in G protein activation of NADPH oxidase by guanine and adenine nucleotides. Eur J Biochem. 1988 Jul 15;175(1):51–55. doi: 10.1111/j.1432-1033.1988.tb14165.x. [DOI] [PubMed] [Google Scholar]
- Seifert R., Schultz G. Reversible activation of NADPH oxidase in membranes of HL-60 human leukemic cells. Biochem Biophys Res Commun. 1987 Aug 14;146(3):1296–1302. doi: 10.1016/0006-291x(87)90790-x. [DOI] [PubMed] [Google Scholar]
- Seifert R., Schultz G., Richter-Freund M., Metzger J., Wiesmüller K. H., Jung G., Bessler W. G., Hauschildt S. Activation of superoxide formation and lysozyme release in human neutrophils by the synthetic lipopeptide Pam3Cys-Ser-(Lys)4. Involvement of guanine-nucleotide-binding proteins and synergism with chemotactic peptides. Biochem J. 1990 May 1;267(3):795–802. doi: 10.1042/bj2670795. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Serra M. C., Bazzoni F., Della Bianca V., Greskowiak M., Rossi F. Activation of human neutrophils by substance P. Effect on oxidative metabolism, exocytosis, cytosolic Ca2+ concentration and inositol phosphate formation. J Immunol. 1988 Sep 15;141(6):2118–2124. [PubMed] [Google Scholar]
- Song D. L., Chang G. D., Ho C. L., Chang C. H. Structural requirements of mastoparan for activation of membrane-bound guanylate cyclase. Eur J Pharmacol. 1993 Nov 15;247(3):283–288. doi: 10.1016/0922-4106(93)90196-g. [DOI] [PubMed] [Google Scholar]
- Tomita U., Inanobe A., Kobayashi I., Takahashi K., Ui M., Katada T. Direct interactions of mastoparan and compound 48/80 with GTP-binding proteins. J Biochem. 1991 Jan;109(1):184–189. doi: 10.1093/oxfordjournals.jbchem.a123342. [DOI] [PubMed] [Google Scholar]
- Walseth T. F., Yuen P. S., Moos M. C., Jr Preparation of alpha-32P-labeled nucleoside triphosphates, nicotinamide adenine dinucleotide, and cyclic nucleotides for use in determining adenylyl and guanylyl cyclases and cyclic nucleotide phosphodiesterase. Methods Enzymol. 1991;195:29–44. doi: 10.1016/0076-6879(91)95152-a. [DOI] [PubMed] [Google Scholar]
- Weingarten R., Ransnäs L., Mueller H., Sklar L. A., Bokoch G. M. Mastoparan interacts with the carboxyl terminus of the alpha subunit of Gi. J Biol Chem. 1990 Jul 5;265(19):11044–11049. [PubMed] [Google Scholar]
- Wenzel-Seifert K., Seifert R. Cyclosporin H is a potent and selective formyl peptide receptor antagonist. Comparison with N-t-butoxycarbonyl-L-phenylalanyl-L-leucyl-L-phenylalanyl-L- leucyl-L-phenylalanine and cyclosporins A, B, C, D, and E. J Immunol. 1993 May 15;150(10):4591–4599. [PubMed] [Google Scholar]
- Wieland T., Jakobs K. H. Evidence for nucleoside diphosphokinase-dependent channeling of guanosine 5'-(gamma-thio)triphosphate to guanine nucleotide-binding proteins. Mol Pharmacol. 1992 Nov;42(5):731–735. [PubMed] [Google Scholar]
- Wieland T., Kreiss J., Gierschik P., Jakobs K. H. Role of GDP in formyl-peptide-receptor-induced activation of guanine-nucleotide-binding proteins in membranes of HL 60 cells. Eur J Biochem. 1992 May 1;205(3):1201–1206. doi: 10.1111/j.1432-1033.1992.tb16891.x. [DOI] [PubMed] [Google Scholar]
- Wu C. Y., Chen C. F., Chiang C. F. Stimulation of inositol phosphate production and GTPase activity by compound 48/80 in rat peritoneal mast cells. Biochem Biophys Res Commun. 1993 Apr 15;192(1):204–213. doi: 10.1006/bbrc.1993.1401. [DOI] [PubMed] [Google Scholar]
- Wu D., LaRosa G. J., Simon M. I. G protein-coupled signal transduction pathways for interleukin-8. Science. 1993 Jul 2;261(5117):101–103. doi: 10.1126/science.8316840. [DOI] [PubMed] [Google Scholar]