Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial
. 2004 Mar;29(3):387-92.
doi: 10.1002/mus.10559.

Oxaliplatin-induced neurotoxicity: acute hyperexcitability and chronic neuropathy

Affiliations
Clinical Trial

Oxaliplatin-induced neurotoxicity: acute hyperexcitability and chronic neuropathy

T J Lehky et al. Muscle Nerve. 2004 Mar.

Abstract

Oxaliplatin, a platinum-based chemotherapeutic agent, is effective in the treatment of solid tumors, particularly colorectal cancer. During and immediately following oxaliplatin infusion, patients may experience cold-induced paresthesias, throat and jaw tightness, and occasionally focal weakness. We assessed nerve conduction studies and findings on needle electromyography of patients with metastatic colorectal cancer before and during treatment with oxaliplatin. Twenty-two patients had follow-up studies within 48 h following oxaliplatin infusions, and 14 patients had follow-up studies after 3-9 treatment cycles. Repetitive compound muscle action potentials and neuromyotonic discharges were observed in the first 24-48 h following oxaliplatin infusion, but resolved by 3 weeks. After 8-9 treatment cycles, sensory nerve action potential amplitudes declined, without conduction velocity changes or neuromyotonic discharges. The acute neurological symptoms reflect a state of peripheral nerve hyperexcitability that likely represents a transient oxaliplatin-induced channelopathy. Chronic treatment causes an axonal neuropathy similar to other platinum-based chemotherapeutic agents.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources