Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Dec;55(12):2065-2074.
doi: 10.1038/s41588-023-01534-4. Epub 2023 Nov 9.

Characterizing prostate cancer risk through multi-ancestry genome-wide discovery of 187 novel risk variants

Anqi Wang  1 Jiayi Shen  1 Alex A Rodriguez  2 Edward J Saunders  3 Fei Chen  1 Rohini Janivara  4 Burcu F Darst  1   5 Xin Sheng  1 Yili Xu  1 Alisha J Chou  1 Sara Benlloch  6 Tokhir Dadaev  3 Mark N Brook  3 Anna Plym  7   8 Ali Sahimi  9 Thomas J Hoffman  10   11 Atushi Takahashi  12   13 Koichi Matsuda  14 Yukihide Momozawa  15 Masashi Fujita  16 Triin Laisk  17 Jéssica Figuerêdo  17 Kenneth Muir  18   19 Shuji Ito  20   21 Xiaoxi Liu  22 Biobank Japan ProjectYuji Uchio  20 Michiaki Kubo  21 Yoichiro Kamatani  22   23 Artitaya Lophatananon  18 Peggy Wan  9 Caroline Andrews  24 Adriana Lori  25 Parichoy P Choudhury  26 Johanna Schleutker  27   28 Teuvo L J Tammela  29 Csilla Sipeky  27 Anssi Auvinen  30 Graham G Giles  31   32   33 Melissa C Southey  33 Robert J MacInnis  31   32 Cezary Cybulski  34 Dominika Wokolorczyk  34 Jan Lubinski  34 Christopher T Rentsch  35   36   37 Kelly Cho  38   39 Benjamin H Mcmahon  40 David E Neal  41   42   43 Jenny L Donovan  44 Freddie C Hamdy  45   46 Richard M Martin  44   47   48 Borge G Nordestgaard  49   50 Sune F Nielsen  49   50 Maren Weischer  50 Stig E Bojesen  49   50 Andreas Røder  51   52 Hein V Stroomberg  51 Jyotsna Batra  53   54 Suzanne Chambers  55 Lisa Horvath  56   57 Judith A Clements  54 Wayne Tilly  58 Gail P Risbridger  59   60 Henrik Gronberg  7 Markus Aly  7   61   62 Robert Szulkin  7   63 Martin Eklund  7 Tobias Nordstrom  7   64 Nora Pashayan  65   66 Alison M Dunning  66 Maya Ghoussaini  67 Ruth C Travis  68 Tim J Key  68 Elio Riboli  69 Jong Y Park  70 Thomas A Sellers  70 Hui-Yi Lin  71 Demetrius Albanes  72 Stephanie Weinstein  72 Michael B Cook  72 Lorelei A Mucci  73 Edward Giovannucci  73 Sara Lindstrom  74 Peter Kraft  75 David J Hunter  76 Kathryn L Penney  77 Constance Turman  75 Catherine M Tangen  78 Phyllis J Goodman  78 Ian M Thompson Jr  79 Robert J Hamilton  80   81 Neil E Fleshner  80 Antonio Finelli  82 Marie-Élise Parent  83 Janet L Stanford  5 Elaine A Ostrander  84 Stella Koutros  72 Laura E Beane Freeman  72 Meir Stampfer  77 Alicja Wolk  85   86 Niclas Håkansson  85 Gerald L Andriole  87 Robert N Hoover  72 Mitchell J Machiela  72 Karina Dalsgaard Sørensen  88   89 Michael Borre  89   90 William J Blot  91   92 Wei Zheng  91 Edward D Yeboah  93 James E Mensah  93   94 Yong-Jie Lu  95 Hong-Wei Zhang  96 Ninghan Feng  97 Xueying Mao  95 Yudong Wu  98 Shan-Chao Zhao  99 Zan Sun  100 Stephen N Thibodeau  101 Shannon K McDonnell  102 Daniel J Schaid  102 Catharine M L West  103 Gill Barnett  104 Christiane Maier  105 Thomas Schnoeller  106 Manuel Luedeke  105 Adam S Kibel  107 Bettina F Drake  108 Olivier Cussenot  109   110 Geraldine Cancel-Tassin  109   110 Florence Menegaux  111 Thérèse Truong  111 Yves Akoli Koudou  112 Esther M John  113 Eli Marie Grindedal  114 Lovise Maehle  114 Kay-Tee Khaw  115 Sue A Ingles  116 Mariana C Stern  116 Ana Vega  117   118   119 Antonio Gómez-Caamaño  120 Laura Fachal  117   118   119   121 Barry S Rosenstein  122   123 Sarah L Kerns  124 Harry Ostrer  125 Manuel R Teixeira  126   127   128 Paula Paulo  127 Andreia Brandão  127 Stephen Watya  129 Alexander Lubwama  129 Jeannette T Bensen  130   131 Ebonee N Butler  130 James L Mohler  131   132 Jack A Taylor  133   134 Manolis Kogevinas  135   136   137   138 Trinidad Dierssen-Sotos  138   139 Gemma Castaño-Vinyals  135   136   137   138 Lisa Cannon-Albright  140   141 Craig C Teerlink  140   141 Chad D Huff  142 Patrick Pilie  143 Yao Yu  142 Ryan J Bohlender  142 Jian Gu  142 Sara S Strom  144 Luc Multigner  145 Pascal Blanchet  146 Laurent Brureau  146 Radka Kaneva  147 Chavdar Slavov  148 Vanio Mitev  147 Robin J Leach  149 Hermann Brenner  150   151   152 Xuechen Chen  150 Bernd Holleczek  153 Ben Schöttker  150 Eric A Klein  154   155 Ann W Hsing  113 Rick A Kittles  156 Adam B Murphy  157 Christopher J Logothetis  143 Jeri Kim  143 Susan L Neuhausen  158 Linda Steele  158 Yuan Chun Ding  158 William B Isaacs  159 Barbara Nemesure  160 Anselm J M Hennis  160   161 John Carpten  162 Hardev Pandha  163 Agnieszka Michael  163 Kim De Ruyck  164 Gert De Meerleer  165 Piet Ost  165 Jianfeng Xu  166 Azad Razack  167 Jasmine Lim  167 Soo-Hwang Teo  168 Lisa F Newcomb  5   169 Daniel W Lin  5   169 Jay H Fowke  170 Christine M Neslund-Dudas  171 Benjamin A Rybicki  171 Marija Gamulin  172 Davor Lessel  173 Tomislav Kulis  174 Nawaid Usmani  175   176 Aswin Abraham  175   176 Sandeep Singhal  175 Matthew Parliament  175   176 Frank Claessens  177 Steven Joniau  178 Thomas Van den Broeck  177   178 Manuela Gago-Dominguez  179   180 Jose Esteban Castelao  181 Maria Elena Martinez  182 Samantha Larkin  183 Paul A Townsend  184 Claire Aukim-Hastie  185 William S Bush  186 Melinda C Aldrich  187 Dana C Crawford  186 Shiv Srivastava  188 Jennifer Cullen  186   189 Gyorgy Petrovics  189 Graham Casey  190 Ying Wang  25 Yao Tettey  94   191 Joseph Lachance  4 Wei Tang  192 Richard B Biritwum  94 Andrew A Adjei  193 Evelyn Tay  94 Ann Truelove  194 Shelley Niwa  194 Kosj Yamoah  70   195 Koveela Govindasami  3 Anand P Chokkalingam  196 Jacob M Keaton  91   197 Jacklyn N Hellwege  91   198 Peter E Clark  199 Mohamed Jalloh  200 Serigne M Gueye  200 Lamine Niang  200 Olufemi Ogunbiyi  201 Olayiwola Shittu  202 Olukemi Amodu  203 Akindele O Adebiyi  204 Oseremen I Aisuodionoe-Shadrach  205 Hafees O Ajibola  205 Mustapha A Jamda  205 Olabode P Oluwole  205 Maxwell Nwegbu  205 Ben Adusei  206 Sunny Mante  206 Afua Darkwa-Abrahams  94 Halimatou Diop  207 Susan M Gundell  1 Monique J Roobol  208 Guido Jenster  208 Ron H N van Schaik  209 Jennifer J Hu  210 Maureen Sanderson  211 Linda Kachuri  212 Rohit Varma  213 Roberta McKean-Cowdin  9 Mina Torres  213 Michael H Preuss  214 Ruth J F Loos  214 Matthew Zawistowski  215   216 Sebastian Zöllner  215   216   217 Zeyun Lu  9 Stephen K Van Den Eeden  218 Douglas F Easton  121 Stefan Ambs  192 Todd L Edwards  91 Reedik Mägi  17 Timothy R Rebbeck  24 Lars Fritsche  219 Stephen J Chanock  72 Sonja I Berndt  72 Fredrik Wiklund  7 Hidewaki Nakagawa  16 John S Witte  212   220 J Michael Gaziano  38   39 Amy C Justice  35 Nick Mancuso  1 Chikashi Terao  22   221   222 Rosalind A Eeles  3   223 Zsofia Kote-Jarai  3 Ravi K Madduri  2 David V Conti #  1 Christopher A Haiman #  224
Collaborators, Affiliations

Characterizing prostate cancer risk through multi-ancestry genome-wide discovery of 187 novel risk variants

Anqi Wang et al. Nat Genet. 2023 Dec.

Abstract

The transferability and clinical value of genetic risk scores (GRSs) across populations remain limited due to an imbalance in genetic studies across ancestrally diverse populations. Here we conducted a multi-ancestry genome-wide association study of 156,319 prostate cancer cases and 788,443 controls of European, African, Asian and Hispanic men, reflecting a 57% increase in the number of non-European cases over previous prostate cancer genome-wide association studies. We identified 187 novel risk variants for prostate cancer, increasing the total number of risk variants to 451. An externally replicated multi-ancestry GRS was associated with risk that ranged from 1.8 (per standard deviation) in African ancestry men to 2.2 in European ancestry men. The GRS was associated with a greater risk of aggressive versus non-aggressive disease in men of African ancestry (P = 0.03). Our study presents novel prostate cancer susceptibility loci and a GRS with effective risk stratification across ancestry groups.

PubMed Disclaimer

Conflict of interest statement

Competing interests

The authors declare no competing interests.

Figures

Extended Data Fig. 1
Extended Data Fig. 1
Venn diagram of prostate cancer risk variants common (MAF>1%) among European, African, Asian and Hispanic populations. The plot illustrates the distribution of 451 prostate cancer risk variants, highlighting the number of variants that are either unique to or shared among European, African, Asian, and Hispanic populations. Five variants with a minor allele frequency (MAF) of ≤1% across all populations are specifically included under the European population, where they have the highest MAF. Numbers in parentheses denote the total count of variants common to each respective population.
Extended Data Fig. 2
Extended Data Fig. 2
The associations of GRS451 and total prostate cancer risk in GWAS discovery and replication sub-studies and meta-analysis by ancestry. Odds ratios and 95% confidence intervals for one SD increase in GRS451 and total prostate cancer risk were calculated from logistic regression. The columns ‘case’ and ‘control’ show the case and control sample sizes, respectively. ‘META’ refers to the meta-analyzed results using the inverse-variance weighted method. The y-axis shows each individual sub-studies (details of each sub-studies are available in Supplemental Table 1 and 2) and their corresponding meta-analyzed results by ancestry and study phase (GWAS discovery or replication), as well as overall meta-analyzed results.
Figure 1.
Figure 1.
Manhattan plot of results from the multi-ancestry prostate cancer meta-analysis. Multi-ancestry meta-analysis (156,319 cases and 788,443 controls) was performed using an inverse-variance-weighted fixed-effects model. Nominal statistical significance is shown as −log10P (two-sided) of z statistics on the y axis. Purple and orange circles indicate previously known or novel risk variants, respectively, that were genome-wide significant in multi-ancestry or ancestry-specific meta-analyses. The plot is truncated at −log10P=600.
Figure 2.
Figure 2.
Comparison of the ancestry-specific results of the 451 risk variants for prostate cancer. (a) Venn diagram of genome-wide significant variants (P<5x10−8) among European, African, Asian, and Hispanic populations. (b) Venn diagram of nominally significant variants (P<0.05) among European, African, Asian, and Hispanic populations. (c) Comparison of ancestry-specific odds ratios (ORs) between European and African, Asian, and Hispanic populations, respectively. The number of variants is denoted in the lower right corner. Genome-wide significant variants among African, Asian, or Hispanic populations are highlighted in orange. Two-sided Pearson correlation tests were performed. The Pearson’s correlation coefficient between effect size and corresponding P-value are denoted in the upper left in each sub-panel. Only common variants across all populations (MAF>1%, n=370) were included in (a), (b), and (c).
Figure 3.
Figure 3.
Percentage of cases in the lowest and highest genetic risk score (GRS) quintiles based on GRS100, GRS181, GRS269, and GRS451 in the multi-ancestry sample. GRS risk quintiles were categorized based on GRS distributions among controls. Quintile 1 (orange bar) refers to the lowest quintile (0–20%), and quintile 5 (yellow bar) refers to the highest quintile (80–100%).
Figure 4.
Figure 4.
The associations of GRS and prostate cancer risk in GWAS discovery and replication samples. ORs and 95% Confidence Intervals (CIs) from logistic regression for one standard deviation (SD) increase in (a) GRS100, GRS181, GRS269, and GRS451 and total prostate cancer risk by ancestry in the GWAS discovery studies; (b) GRS269 and GRS451 and total prostate cancer risk in the replication studies: Michigan Genomics Initiative (MGI), Mass General Brigham Biobank (MGB), Estonian Biobank (EstBB ), and Men of African Descent and Carcinoma of the Prostate (MADCaP); (c) GRS451 and total prostate cancer risk by age; (d) GRS451 and GRS400 and prostate cancer aggressiveness among prostate cancer cases in the GWAS discovery studies. ‘META’ refers to the meta-analyzed results for all populations using the inverse-variance weighted method. Incremental percentage change of ORs were calculated for each comparison. The columns ‘case’ and ‘control’ show the case and control sample sizes, and the columns ‘agg’ and ‘non-agg’ show the aggressive and non-aggressive cases sample sizes, respectively.
Figure 5.
Figure 5.
Cumulative absolute risk by age. Solid lines are the cumulative absolute risk for individuals in the top 16% GRS for African ancestry and top 20% for European ancestry. These GRS categories represent the percent of individuals in each population with at least a 2-fold increase in risk in comparison to the median GRS (as indicated in the inset distributions for African and European ancestries, respectively). Dashed horizontal lines indicate the lifetime absolute risk achieved at age 85 for the average (50% GRS) in African (11.6%) and European (7.8%) ancestry populations. Solid dots indicate the ages at which lifetime absolute risk levels are achieved for men of African ancestry in the top 16% GRS (age = 66 years) and men of European ancestry in the top 20% GRS (age = 69 years).

Similar articles

  • Genome-wide association study of prostate-specific antigen levels in 392,522 men identifies new loci and improves prediction across ancestry groups.
    Hoffmann TJ, Graff RE, Madduri RK, Rodriguez AA, Cario CL, Feng K, Jiang Y, Wang A, Klein RJ, Pierce BL, Eggener S, Tong L, Blot W, Long J, Goss LB, Darst BF, Rebbeck T, Lachance J, Andrews C, Adebiyi AO, Adusei B, Aisuodionoe-Shadrach OI, Fernandez PW, Jalloh M, Janivara R, Chen WC, Mensah JE, Agalliu I, Berndt SI, Shelley JP, Schaffer K, Machiela MJ, Freedman ND, Huang WY, Li SA, Goodman PJ, Till C, Thompson I, Lilja H, Ranatunga DK, Presti J, Van Den Eeden SK, Chanock SJ, Mosley JD, Conti DV, Haiman CA, Justice AC, Kachuri L, Witte JS. Hoffmann TJ, et al. Nat Genet. 2025 Feb;57(2):334-344. doi: 10.1038/s41588-024-02068-z. Epub 2025 Feb 10. Nat Genet. 2025. PMID: 39930085 Free PMC article.
  • Discovery and fine-mapping of adiposity loci using high density imputation of genome-wide association studies in individuals of African ancestry: African Ancestry Anthropometry Genetics Consortium.
    Ng MCY, Graff M, Lu Y, Justice AE, Mudgal P, Liu CT, Young K, Yanek LR, Feitosa MF, Wojczynski MK, Rand K, Brody JA, Cade BE, Dimitrov L, Duan Q, Guo X, Lange LA, Nalls MA, Okut H, Tajuddin SM, Tayo BO, Vedantam S, Bradfield JP, Chen G, Chen WM, Chesi A, Irvin MR, Padhukasahasram B, Smith JA, Zheng W, Allison MA, Ambrosone CB, Bandera EV, Bartz TM, Berndt SI, Bernstein L, Blot WJ, Bottinger EP, Carpten J, Chanock SJ, Chen YI, Conti DV, Cooper RS, Fornage M, Freedman BI, Garcia M, Goodman PJ, Hsu YH, Hu J, Huff CD, Ingles SA, John EM, Kittles R, Klein E, Li J, McKnight B, Nayak U, Nemesure B, Ogunniyi A, Olshan A, Press MF, Rohde R, Rybicki BA, Salako B, Sanderson M, Shao Y, Siscovick DS, Stanford JL, Stevens VL, Stram A, Strom SS, Vaidya D, Witte JS, Yao J, Zhu X, Ziegler RG, Zonderman AB, Adeyemo A, Ambs S, Cushman M, Faul JD, Hakonarson H, Levin AM, Nathanson KL, Ware EB, Weir DR, Zhao W, Zhi D; Bone Mineral Density in Childhood Study (BMDCS) Group; Arnett DK, Grant SFA, Kardia SLR, Oloapde OI, Rao DC, Rotimi CN, Sale MM, Williams LK, Zemel BS, Becker DM, Borecki IB, Evans MK, Harris TB, Hirschhorn JN, Li Y, Patel SR, Psaty BM, Rotter JI, Wilson JG, Bowden DW, Cupples LA, Haiman… See abstract for full author list ➔ Ng MCY, et al. PLoS Genet. 2017 Apr 21;13(4):e1006719. doi: 10.1371/journal.pgen.1006719. eCollection 2017 Apr. PLoS Genet. 2017. PMID: 28430825 Free PMC article.
  • Multi-ancestry genome-wide meta-analysis of 56,241 individuals identifies known and novel cross-population and ancestry-specific associations as novel risk loci for Alzheimer's disease.
    Rajabli F, Benchek P, Tosto G, Kushch N, Sha J, Bazemore K, Zhu C, Lee WP, Haut J, Hamilton-Nelson KL, Wheeler NR, Zhao Y, Farrell JJ, Grunin MA, Leung YY, Kuksa PP, Li D, da Fonseca EL, Mez JB, Palmer EL, Pillai J, Sherva RM, Song YE, Zhang X, Ikeuchi T, Iqbal T, Pathak O, Valladares O, Reyes-Dumeyer D, Kuzma AB, Abner E, Adams LD, Adams PM, Aguirre A, Albert MS, Albin RL, Allen M, Alvarez L, Apostolova LG, Arnold SE, Asthana S, Atwood CS, Auerbach S, Ayres G, Baldwin CT, Barber RC, Barnes LL, Barral S, Beach TG, Becker JT, Beecham GW, Beekly D, Benitez BA, Bennett D, Bertelson J, Bird TD, Blacker D, Boeve BF, Bowen JD, Boxer A, Brewer J, Burke JR, Burns JM, Buxbaum JD, Cairns NJ, Cantwell LB, Cao C, Carlson CS, Carlsson CM, Carney RM, Carrasquillo MM, Chasse S, Chesselet MF, Chin NA, Chui HC, Chung J, Craft S, Crane PK, Cribbs DH, Crocco EA, Cruchaga C, Cuccaro ML, Cullum M, Darby E, Davis B, De Jager PL, DeCarli C, DeToledo J, Dick M, Dickson DW, Dombroski BA, Doody RS, Duara R, Ertekin-Taner N, Evans DA, Faber KM, Fairchild TJ, Fallon KB, Fardo DW, Farlow MR, Fernandez-Hernandez V, Ferris S, Friedland RP, Foroud TM, Frosch MP, Fulton-Howard B, Galasko DR, Gamboa A, Gearing M, … See abstract for full author list ➔ Rajabli F, et al. Genome Biol. 2025 Jul 17;26(1):210. doi: 10.1186/s13059-025-03564-z. Genome Biol. 2025. PMID: 40676597 Free PMC article.
  • A systematic review of replication studies of prostate cancer susceptibility genetic variants in high-risk men originally identified from genome-wide association studies.
    Ishak MB, Giri VN. Ishak MB, et al. Cancer Epidemiol Biomarkers Prev. 2011 Aug;20(8):1599-610. doi: 10.1158/1055-9965.EPI-11-0312. Epub 2011 Jun 29. Cancer Epidemiol Biomarkers Prev. 2011. PMID: 21715604
  • Association of 8q24.21 loci with the risk of colorectal cancer: a systematic review and meta-analysis.
    Haerian MS, Baum L, Haerian BS. Haerian MS, et al. J Gastroenterol Hepatol. 2011 Oct;26(10):1475-84. doi: 10.1111/j.1440-1746.2011.06831.x. J Gastroenterol Hepatol. 2011. PMID: 21722176

Cited by

References

    1. Bray F et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68, 394–424 (2018). - PubMed
    1. Conti DV et al. Trans-ancestry genome-wide association meta-analysis of prostate cancer identifies new susceptibility loci and informs genetic risk prediction. Nature Genetics 53, 65–75 (2021). - PMC - PubMed
    1. Schumacher FR et al. Association analyses of more than 140,000 men identify 63 new prostate cancer susceptibility loci. Nat Genet 50, 928–936 (2018). - PMC - PubMed
    1. Dadaev T et al. Fine-mapping of prostate cancer susceptibility loci in a large meta-analysis identifies candidate causal variants. Nat Commun 9, 2256 (2018). - PMC - PubMed
    1. Conti DV et al. Two Novel Susceptibility Loci for Prostate Cancer in Men of African Ancestry. J Natl Cancer Inst 109(2017). - PMC - PubMed

Methods-only References

    1. Das S et al. Next-generation genotype imputation service and methods. Nat Genet 48, 1284–1287 (2016). - PMC - PubMed
    1. Howie BN, Donnelly P & Marchini J A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet 5, e1000529 (2009). - PMC - PubMed
    1. Loh P-R et al. Reference-based phasing using the Haplotype Reference Consortium panel. Nature Genetics 48, 1443–1448 (2016). - PMC - PubMed
    1. Kurki MI et al. FinnGen provides genetic insights from a well-phenotyped isolated population. Nature 613, 508–518 (2023). - PMC - PubMed
    1. Auton A et al. A global reference for human genetic variation. Nature 526, 68–74 (2015). - PMC - PubMed